Repeated, long-term (weeks to months) exposure to standard antidepressant medications is required to achieve treatment efficacy. In contrast, acute ketamine quickly improves mood for an extended time. Recent work implicates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in mediating ketamine's antidepressant effects.
View Article and Find Full Text PDFThe bed nucleus of the stria terminalis (BNST) is a highly heterogeneous limbic forebrain structure that serves as a relay connecting autonomic, neuroendocrine and behavioral function. It can be divided into over 16 individual subregions with distinct neuronal subpopulations based on receptors, transmitters, and neuropeptides. Specifically, the BNST projection to the ventral tegmental area (VTA), the dopamine hub of the brain, has been shown to have a crucial role in the stress response.
View Article and Find Full Text PDFThe estrous cycle is a potent modulator of neuron physiology. In rodents, ventral tegmental area (VTA) dopamine (DA) activity has been shown to fluctuate across the estrous cycle. Although the behavioral effect of fluctuating sex steroids on the reward circuit is well studied in response to drugs of abuse, few studies have focused on the molecular adaptations in the context of stress and motivated social behaviors.
View Article and Find Full Text PDFWith an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice.
View Article and Find Full Text PDFAnxiety disorders are complex diseases, and often co-occur with depression. It is as yet unclear if a common neural circuit controls anxiety-related behaviors in both anxiety-alone and comorbid conditions. Here, utilizing the chronic social defeat stress (CSDS) paradigm that induces singular or combined anxiety- and depressive-like phenotypes in mice, we show that a ventral tegmental area (VTA) dopamine circuit projecting to the basolateral amygdala (BLA) selectively controls anxiety- but not depression-like behaviors.
View Article and Find Full Text PDFChronic stress in both humans and rodents induces a robust downregulation of neuroligin-2, a key component of the inhibitory synapse, in the NAc that modifies behavioral coping mechanisms and stress resiliency in mice. Here we extend this observation by examining the role of two other inhibitory synapse constituents, vesicular GABA transporter (vGAT) and gephyrin, in the NAc of male mice that underwent chronic social defeat stress (CSDS) and in patients with major depressive disorder (MDD). We first performed transcriptional profiling of vGAT and gephyrin in postmortem NAc samples from a cohort of healthy controls, medicated, and nonmedicated MDD patients.
View Article and Find Full Text PDFAge-related declines in cognitive fitness are associated with a reduction in autophagy, an intracellular lysosomal catabolic process that regulates protein homeostasis and organelle turnover. However, the functional significance of autophagy in regulating cognitive function and its decline during aging remains largely elusive. Here, we show that stimulating memory upregulates autophagy in the hippocampus.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a leading cause of disability worldwide, yet current treatment strategies remain limited in their mechanistic diversity. Recent evidence has highlighted a promising novel pharmaceutical target-the KCNQ-type potassium channel-for the treatment of depressive disorders, which may exert a therapeutic effect via functional changes within the brain reward system, including the ventral striatum. The current study assessed the effects of the KCNQ channel opener ezogabine (also known as retigabine) on reward circuitry and clinical symptoms in patients with MDD.
View Article and Find Full Text PDFBackground: Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described.
View Article and Find Full Text PDFThe original version of this Article contained an error in the spelling of the author Scott Edwards, which was incorrectly given as Scott Edward. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFAlcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity.
View Article and Find Full Text PDFCocaine self-administration increases expression of GluA1 subunits in ventral tegmental area (VTA) dopamine neurons, which subsequently enhance the motivation for cocaine. This increase in GluA1 may be dependent on concomitant NMDA receptor (NMDAR) activation during self-administration, similar to cocaine-induced long-term potentiation in the VTA. In this study, we used viral-mediated expression of a dominant-negative GluN1 subunit (HSV-dnGluN1) in VTA neurons to study the effect of transient NMDAR inactivation on the GluA1 increases induced by chronic cocaine self-administration in male rats.
View Article and Find Full Text PDFLess than half of patients suffering from major depressive disorder, a leading cause of disability worldwide, achieve remission with current antidepressants, making it imperative to develop more effective treatment. A new therapeutic direction is emerging from the increased understanding of natural resilience as an active stress-coping process. It is known that potassium (K(+)) channels in the ventral tegmental area (VTA) are an active mediator of resilience.
View Article and Find Full Text PDFBackground: Previous work has shown that chronic social defeat stress (CSDS) induces increased phasic firing of ventral tegmental area (VTA) dopamine (DA) neurons that project to the nucleus accumbens (NAc) selectively in mice that are susceptible to the deleterious effects of the stress. In addition, acute optogenetic phasic stimulation of these neurons promotes susceptibility in animals exposed to acute defeat stress. These findings are paradoxical, as increased DA signaling in NAc normally promotes motivation and reward, and the influence of chronic phasic VTA firing in the face of chronic stress is unknown.
View Article and Find Full Text PDFHerpes simplex virus (HSV) can be used for a wide range of genetic manipulations in ex vivo slices of central nervous system tissue from both young and adult rodents. The fast expression of the HSV viral-mediated gene transfer, which can be engineered to produce cell-type specificity, can be utilized in slice cultures for a variety of purposes over a 1- to 4-day period with spatial and temporal specificity. This protocol exploits the rapid expression of HSV viral vectors by utilizing slice culture for electrophysiological recordings, avoiding the need to do intracranial viral injections.
View Article and Find Full Text PDFPostsynaptic remodeling of glutamatergic synapses on ventral striatum (vSTR) medium spiny neurons (MSNs) is critical for shaping stress responses. However, it is unclear which presynaptic inputs are involved. Susceptible mice exhibited increased synaptic strength at intralaminar thalamus (ILT), but not prefrontal cortex (PFC), inputs to vSTR MSNs following chronic social stress.
View Article and Find Full Text PDFWe investigate stimulus specificity of repetition priming in a tractable model system; the feeding network of Aplysia. Previous studies primarily focused on an aspect of behavior that is altered during ingestive priming, radula opening. Priming of radula opening occurs when two modulatory peptides [feeding circuit activating peptide (FCAP) and cerebral peptide-2 (CP-2)] are released from the cholinergic command-like neuron cerebral buccal interneuron 2.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2014
It is becoming apparent that the activity of many neural networks is shaped by effects of endogenous neuromodulators. Modulators exert second messenger-mediated actions that persist. We consider how this may impact network function and its potential role in the induction of repetition priming (increased performance when behavior is repeated).
View Article and Find Full Text PDFIon channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum and lysosomal ion channels in the regulation of Ca(2+) is well established. In contrast, surprisingly little is known about the function of ion channels on the nuclear envelope (NE).
View Article and Find Full Text PDFTypical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (I(h)).
View Article and Find Full Text PDFMechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc.
View Article and Find Full Text PDFVentral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression.
View Article and Find Full Text PDFHistone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown.
View Article and Find Full Text PDFWhile the abuse of opiate drugs continues to rise, the neuroadaptations that occur with long-term drug exposure remain poorly understood. We describe here a series of chronic morphine-induced adaptations in ventral tegmental area (VTA) dopamine neurons, which are mediated via downregulation of AKT-mTORC2 (mammalian target of rapamycin complex-2). Chronic opiates decrease the size of VTA dopamine neurons in rodents, an effect seen in humans as well, and concomitantly increase the excitability of the cells but decrease dopamine output to target regions.
View Article and Find Full Text PDF