Comp Biochem Physiol A Mol Integr Physiol
January 2025
Am J Physiol Regul Integr Comp Physiol
July 2024
Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
April 2022
Mechanistic evaluations of processes that underlie organism-level physiology often require reductionist approaches. Dermal fibroblasts offer one such approach. These cells are easily obtained from minimally invasive skin biopsy, making them appropriate for the study of protected and/or logistically challenging species.
View Article and Find Full Text PDFThe Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype.
View Article and Find Full Text PDFContinuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild.
View Article and Find Full Text PDFThe mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide.
View Article and Find Full Text PDFLeigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4 mouse model of Leigh syndrome, continuously breathing 11% O (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4 mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood.
View Article and Find Full Text PDFImmune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects.
View Article and Find Full Text PDFDiving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible.
View Article and Find Full Text PDFJ Appl Physiol (1985)
May 2020
Marine mammals have highly specialized physiology, exhibited in many species by extreme breath-holding capabilities that allow deep dives and extended submergence. Cardiovascular control and cell-level hypoxia tolerance are key features of this phenotype. Identifying genomic signatures tied to physiology will be valuable in understanding these natural model species, which may generate translational opportunities to human diseases arising from hypoxic stress or tissue injury.
View Article and Find Full Text PDFSeals experience repeated bouts of ischemia-reperfusion while diving, potentially exposing their tissues to increased oxidant generation and thus oxidative damage and accelerated aging. We contrasted markers of oxidative damage with antioxidant profiles across age and sex for propulsive (longissismus dorsi) and maneuvering (pectoralis) muscles of Weddell seals to determine whether previously observed morphological senescence is associated with oxidative stress. In longissismus dorsi, old (age 17-26 years) seals exhibited a nearly 2-fold increase in apoptosis over young (age 9-16 years) seals.
View Article and Find Full Text PDFNitric oxide (NO) is a potent vasodilator, which improves perfusion and oxygen delivery during tissue hypoxia in terrestrial animals. The vertebrate dive response involves vasoconstriction in select tissues, which persists despite profound hypoxia. Using tissues collected from Weddell seals at necropsy, we investigated whether vasoconstriction is aided by downregulation of local hypoxia signaling mechanisms.
View Article and Find Full Text PDFPurpose: Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression.
View Article and Find Full Text PDFBackground: The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR).
View Article and Find Full Text PDFWeddell and elephant seals are deep-diving mammals, which rely on lung collapse to limit nitrogen absorption and prevent decompression injury. Repeated collapse and re-expansion exposes the lungs to multiple stressors, including ischemia-reperfusion, alveolar shear stress and inflammation. There is no evidence, however, that diving damages pulmonary function in these species.
View Article and Find Full Text PDFMarine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability.
View Article and Find Full Text PDFDysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype.
View Article and Find Full Text PDFThe study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health.
View Article and Find Full Text PDFThe broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways.
View Article and Find Full Text PDFMammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence.
View Article and Find Full Text PDFSmall-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2014
Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity.
View Article and Find Full Text PDF13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection.
View Article and Find Full Text PDF