Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups.
View Article and Find Full Text PDFThe bacteriophage P1 Cre/lox system has been utilized in diverse fungi for marker recycling and exchange, generation of targeted chromosome translocations, and targeted deletion of interstitial chromosome segments. Here we show the application of this tool in the wheat and maize pathogen, Fusarium graminearum. We explored three different ways to introduce Cre into strains with floxed genes, namely transformation with an episomal or integrative plasmid (pLC28), fusion of protoplasts of strains carrying floxed genes with strains expressing Cre by forcing heterokaryons, and crosses between strains with floxed genes and strains expressing Cre to isolate progeny in which the target genes had been deleted during the cross.
View Article and Find Full Text PDFChromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in , , , and . Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres.
View Article and Find Full Text PDF