Purpose: The hamstring tendon is the most commonly used autograft material in reconstructive surgeries of anterior cruciate ligament (ACL) tears. Younger patients have worse surgical outcomes, with a higher risk of re-rupture. We hypothesized that age-related changes in hamstring tendon properties affect the tendon's propensity to rupture when used as an autograft in ACL reconstructions.
View Article and Find Full Text PDFPopulation studies in Aotearoa New Zealand found higher bone mineral density and lower rate of hip fracture in people of Polynesian ancestry compared to Europeans. We hypothesised that differences in osteoblast proliferation and differentiation contribute to the differences in bone properties between the two groups. Osteoblasts were cultured from bone samples obtained from 30 people of Polynesian ancestry and 25 Europeans who had joint replacement surgeries for osteoarthritis.
View Article and Find Full Text PDFAgeing of the skeleton is characterised by decreased bone mineral density, reduced strength, and increased risk of fracture. Although it is known that these changes are determined by the activities of bone cells through the processes of bone modelling and remodelling, details of the molecular mechanisms that underlie age-related changes in bone are still missing. Here, we analysed age-related changes in bone microarchitecture along with global gene expression in samples obtained from patients with osteoarthritis (OA).
View Article and Find Full Text PDFObjective: Monosodium urate (MSU) crystal deposition and gout flares frequently affect osteoarthritic joints. This study was undertaken to examine the effects of human cartilage homogenates on MSU crystallization and MSU crystal-induced inflammation.
Methods: Human cartilage homogenates were prepared from macroscopically healthy and macroscopically diseased knee joint samples.
A positive association between fat and bone mass is maintained through a network of signaling molecules. Clinical studies found that the circulating levels of adiponectin, a peptide secreted from adipocytes, are inversely related to visceral fat mass and bone mineral density, and it has been suggested that adiponectin contributes to the coupling between fat and bone. Our study tested the hypothesis that adiponectin affects bone tissue by comparing the bone phenotype of wild-type and adiponectin-knockout (APN-KO) female mice between the ages of 8-37 weeks.
View Article and Find Full Text PDFTearing of the rotator cuff tendon in the shoulder is a significant clinical problem, with large/full-thickness tears present in ∼22% of the general population and recurrent tear rates postarthroscopic repair being quoted as high as 94%. Tissue-engineered biomaterials are increasingly being investigated as a means to augment rotator cuff repairs, with the aim of inducing host cell responses to increase tendon tissue regeneration. Silk-derived materials are of particular interest due to the high availability, mechanical strength, and biocompatibility of silks.
View Article and Find Full Text PDFMost patients with juvenile Paget's disease (JPD) are homozygous for mutations in the gene TNFRSF11B that result in deficiency of osteoprotegerin (OPG) - a key regulator of bone turnover. So far, about 10 different OPG mutations have been described. The current study presents two novel OPG mutations in JPD patients.
View Article and Find Full Text PDF