The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing.
View Article and Find Full Text PDFEukaryotic DNA is organized in the nucleus in the form of chromatin. Nucleosomes, the fundamental unit of chromatin, are subject to many posttranslational modifications (PTMs) as well as compositional variations through incorporation of histone variants. These alterations play important roles in regulation of genome structure and activity.
View Article and Find Full Text PDFHistone modifications and transcription factor-DNA interactions regulate vital processes such as transcription, recombination, repair, and accurate chromosome segregation. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been instrumental in studying genome-wide distribution of DNA-bound or chromatin-associated factors and histone posttranslational modifications (PTMs). Here, we describe a ChIPmentation protocol adapted for fission yeast, Schizosaccharomyces pombe.
View Article and Find Full Text PDFThe PIWI-interacting RNA (piRNA) pathway guides the DNA methylation of young, active transposons during germline development in male mice. piRNAs tether the PIWI protein MIWI2 (PIWIL4) to the nascent transposon transcript, resulting in DNA methylation through SPOCD1 (refs. ).
View Article and Find Full Text PDFIn the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility.
View Article and Find Full Text PDFCENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-A is replenished and where Mis18C also localizes.
View Article and Find Full Text PDFKinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid . Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs).
View Article and Find Full Text PDFEpe1 histone demethylase restricts H3K9-methylation-dependent heterochromatin, preventing it from spreading over, and silencing, gene-containing regions in fission yeast. External stress induces an adaptive response allowing heterochromatin island formation that confers resistance on surviving wild-type lineages. Here we investigate the mechanism by which Epe1 is regulated in response to stress.
View Article and Find Full Text PDFThe establishment of centromere-specific CENP-A chromatin is influenced by epigenetic and genetic processes. Central domain sequences from fission yeast centromeres are preferred substrates for CENP-A incorporation, but their use is context dependent, requiring adjacent heterochromatin. CENP-A overexpression bypasses heterochromatin dependency, suggesting that heterochromatin ensures exposure to conditions or locations permissive for CENP-A assembly.
View Article and Find Full Text PDFMotivation: Deciphering nucleosome-nucleosome interactions is an important step toward mesoscale description of chromatin organization but computational tools to perform such analyses are not publicly available.
Results: We developed iNucs, a user-friendly and efficient Python-based bioinformatics tool to compute and visualize nucleosome-resolved interactions using standard pairs format input generated from pairtools.
Availabilityand Implementation: https://github.
Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly.
View Article and Find Full Text PDFSpermatogonial stem cells (SSCs) sustain spermatogenesis and fertility throughout adult male life. The conserved RNA-binding protein NANOS2 is essential for the maintenance of SSCs, but its targets and mechanisms of function are not fully understood. Here, we generated a fully functional epitope-tagged mouse allele and applied the highly stringent cross-linking and analysis of cDNAs to define NANOS2 RNA occupancy in SSC lines.
View Article and Find Full Text PDFThe aquatic virus, infectious pancreatic necrosis virus (IPNV), is known to infect various farmed fish, in particular salmonids, and is responsible for large economic losses in the aquaculture industry. Common practices to detect the virus include qPCR tests based on specific primers and serum neutralization tests for virus serotyping. Following the potential presence of IPNV viruses in a fish farm in Scotland containing vaccinated and IPNV-resistant fish, the common serotyping of the IPNV isolates was not made possible.
View Article and Find Full Text PDFThe CRISPR/Cas9 system allows scarless, marker-free genome editing. Current CRISPR/Cas9 systems for the fission yeast rely on tedious and time-consuming cloning procedures to introduce a specific sgRNA target sequence into a Cas9-expressing plasmid. In addition, Cas9 endonuclease has been reported to be toxic to fission yeast when constitutively overexpressed from the strong promoter.
View Article and Find Full Text PDFDuring mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA.
View Article and Find Full Text PDFHeterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change.
View Article and Find Full Text PDFThe PIWI protein MIWI2 and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of young active transposable elements (TEs) in the male germline. piRNAs are proposed to recruit MIWI2 to the transcriptionally active TE loci by base pairing to nascent transcripts, however the downstream mechanisms and effector proteins utilized by MIWI2 in directing de novo TE methylation remain incompletely understood. Here, we show that MIWI2 associates with TEX15 in foetal gonocytes.
View Article and Find Full Text PDFCentromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-A chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2.
View Article and Find Full Text PDFDespite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations.
View Article and Find Full Text PDFThe relationship between DNA sequence, biochemical function, and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in noncoding regions, particularly, in eukaryote genomes. In part, this is because we lack a complete description of the essential noncoding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome.
View Article and Find Full Text PDFSeveral developmental stages of spermatogenesis are transcriptionally quiescent which presents major challenges associated with the regulation of gene expression. Here we identify that the zygotene to pachytene transition is not only associated with the resumption of transcription but also a wave of programmed mRNA degradation that is essential for meiotic progression. We explored whether terminal uridydyl transferase 4- (TUT4-) or TUT7-mediated 3' mRNA uridylation contributes to this wave of mRNA degradation during pachynema.
View Article and Find Full Text PDFActive centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences.
View Article and Find Full Text PDFDNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure.
View Article and Find Full Text PDFHeterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression.
View Article and Find Full Text PDF