In this work we present a characterization of the radionuclidic impurities originated by proton irradiation of enriched water [O]HO in a medical cyclotron through Monte Carlo simulations and experimental measurements. A set of standard samples of enriched water loaded in the cyclotron target cell have been irradiated at 30 μA proton current for 1 h each and, after an appropriate cooling time, measured by HPGe gamma spectrometry. In this way it was possible to study the direct release of radionuclidic impurities from target components as well as the release as a function of target ageing.
View Article and Find Full Text PDFMaterials and components employed in the presence of intense neutron and gamma fields are expected to absorb high dose levels that may induce deep modifications of their physical and mechanical properties, possibly causing loss of their function. A protocol for irradiating elastomeric materials in reactor mixed neutron and gamma fields and for testing the evolution of their main mechanical and physical properties with absorbed dose has been developed. Four elastomeric compounds used for vacuum O-rings, one fluoroelastomer polymer (FPM) based and three ethylene propylene diene monomer rubber (EPDM) based, presently available on the market have been selected for the test.
View Article and Find Full Text PDFThe production of the most common used PET radioisotope Fluorine-18 with commercial cyclotrons is obtained from the O(p,n)F nuclear reaction when O-enriched water is bombarded with a proton beam. We present the characterization of the secondary neutron field spectra produced by this reaction in different locations around the cyclotron, through a comparison between MCNP6 Monte Carlo simulation results and experimental data obtained with Neutron Activation Analysis (NAA) of thin target foils of different materials.
View Article and Find Full Text PDFThe understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments.
View Article and Find Full Text PDFNowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2015
To assess the complexity of DNA damage induced by carbon ions as a function of their energy and LET, 2-Gy irradiations by 100 keV u(-1)-400 MeV u(-1) carbon ions were investigated using the PARTRAC code. The total number of fragments and the yield of fragments of <30 bp were calculated. The authors found a particularly important contribution of DNA fragmentation in the range of <1 kbp for specific energies of <6 MeV u(-1).
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2015
Neutron relative biological effectiveness (RBE) is found to be energy dependent, being maximal for energies ∼1 MeV. This is reflected in the choice of radiation weighting factors wR for radiation protection purposes. In order to trace back the physical origin of this behaviour, a detailed study of energy deposition processes with their full dependences is necessary.
View Article and Find Full Text PDFThe current Boron Neutron Capture Therapy (BNCT) experiments performed at the University of Pavia, Italy, are focusing on the in vivo irradiations of small animals (rats and mice) in order to evaluate the effectiveness of BNCT in the treatment of diffused lung tumors. After the irradiation, the animals are manipulated, which requires an evaluation of the residual radioactivity induced by neutron activation and the relative radiological risk assessment to guarantee the radiation protection of the workers. The induced activity in the irradiated animals was measured by high-resolution open geometry gamma spectroscopy and compared with values obtained by Monte Carlo simulation.
View Article and Find Full Text PDFOne of the main issues of low-energy internal emitters concerns the very short ranges of the beta particles, versus the dimensions of the biological targets. Depending on the chemical form, the radionuclide may be more concentrated either in the cytoplasm or in the nucleus of the target cell. Consequently, since in most cases conventional dosimetry neglects this issue it may overestimate or underestimate the dose to the nucleus and hence the biological effects.
View Article and Find Full Text PDFThe number of small radiation-induced DNA fragments can be heavily underestimated when determined from measurements of DNA mass fractions by gel electrophoresis, leading to a consequent underestimation of the initial DNA damage induction. In this study we reanalyzed the experimental results for DNA fragmentation and DNA double-strand break (DSB) yields in human fibroblasts irradiated with γ rays and nitrogen ion beams with linear energy transfer (LET) equal to 80, 125, 175 and 225 keV/μm, originally measured by Höglund et al. (Radiat Res 155, 818-825, 2001 and Int J Radiat Biol 76, 539-547, 2000).
View Article and Find Full Text PDFPurpose: The role of track structures for understanding the biological effects of radiation has been the subject of research activities for decades. The physics that describes such processes is the core Monte Carlo codes, such as the biophysical PARTRAC (PARticle TRACks) code described in this review, which follow the mechanisms of radiation-matter interaction from the early stage. In this paper a review of the track structure theory (and of its possible extension concerning non-DNA targets) is presented.
View Article and Find Full Text PDFRadiat Prot Dosimetry
February 2011
The investigation of the bystander phenomena (i.e. the induction of damage in cells not directly traversed by radiation) is strictly related to the study of the mechanisms of intercellular communication and of the perturbative effects of radiation.
View Article and Find Full Text PDFRadiat Prot Dosimetry
February 2011
The PARTRAC code has been developed constantly in the last several years. It is a Monte Carlo code based on an event-by-event description of the interactions taking place between the ionising radiation and liquid water, and in the present version simulates the transport of photons, electrons, protons, helium and heavier ions. This is combined with an atom-by-atom representation of the biological target, i.
View Article and Find Full Text PDFCell-to-cell signaling has become a significant issue in radiation biology due to experimental evidence, accumulated primarily since the early 1990s, of radiation-induced bystander effects. Several candidate mediators involved in cell-to-cell communication have been investigated and proposed as being responsible for this phenomenon, but the current investigation techniques (both theoretical and experimental) of the mechanisms involved, due to the particular set-up of each experiment, result in experimental data that often are not directly comparable. In this study, a comprehensive approach was adopted to describe cell-to-cell communication (focusing on cytokine signaling) and its modulation by external agents such as ionizing radiation.
View Article and Find Full Text PDFWe simulated the irradiation of human fibroblasts with gamma rays, protons and helium, carbon and iron ions at a fixed dose of 5 Gy. The simulations were performed with the biophysical Monte Carlo code PARTRAC. From the output of the code, containing in particular the genomic positions of the radiation-induced DNA double-strand breaks (DSBs), we obtained the DNA fragmentation spectra.
View Article and Find Full Text PDFWe studied the DNA fragmentation induced in human fibroblasts by iron-ion beams of two different energies: 115 MeV/nucleon and 414 MeV/nucleon. Experimental data were obtained in the fragment size range 1-5700 kbp; Monte Carlo simulations were performed with the PARTRAC code; data analysis was also performed through the Generalized Broken Stick (GBS) model. The comparison between experimental and simulated data for the number of fragments produced in two different size ranges, 1-23 kbp and 23-5700 kbp, gives a satisfactory agreement for both radiation qualities.
View Article and Find Full Text PDFDNA higher-order structures and (non-histonic) *;OH radical scavengers have well known protective effects in the induction of single- and double-strand breaks by ionising radiation. In a previous work, such protective roles have been quantified for gamma radiation (Valota et al., Int.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2007
In the last 10 years evidence has accumulated on the so-called radiation-induced 'non-targeted effects' and in particular on bystander effects, consisting of damage induction in non-irradiated cells most likely following the release of soluble factors by the irradiated ones. These phenomena were observed for different biological endpoints, both lethal and non-lethal for the cell. Although the underlying mechanisms are largely unknown, it is now widely recognised that two types of cellular communication (i.
View Article and Find Full Text PDF