Publications by authors named "Allman B"

Article Synopsis
  • Sensory processing disruptions, a key feature of autism spectrum disorder (ASD), are commonly evaluated using the acoustic startle response and prepulse inhibition (PPI).
  • A study utilizing knock-out (KO) rats found that PPI deficits vary significantly based on factors like sex, prepulse intensity, and startle stimulus intensity.
  • The research revealed that under certain conditions, KO rats performed better than wild-types, suggesting that evaluating PPI requires careful consideration of testing conditions to address conflicting results in prior studies.
View Article and Find Full Text PDF

It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex.

View Article and Find Full Text PDF

Following adult-onset hearing impairment, crossmodal plasticity can occur within various sensory cortices, often characterized by increased neural responses to visual stimulation in not only the auditory cortex, but also in the visual and audiovisual cortices. In the present study, we used an established model of loud noise exposure in rats to examine, for the first time, whether the crossmodal plasticity in the audiovisual cortex that occurs following a relatively mild degree of hearing loss emerges solely from altered intracortical processing or if thalamocortical changes also contribute to the crossmodal effects. Using a combination of an established pharmacological 'cortical silencing' protocol and current source density analysis of the laminar activity recorded across the layers of the audiovisual cortex (i.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a neurodevelopmental behavioral disorder characterized by social, communicative, and motor deficits. There is no single etiological cause for ASD, rather, there are various genetic and environmental factors that increase the risk for ASD. It is thought that some of these factors influence the same underlying neural mechanisms, and that an interplay of both genetic and environmental factors would better explain the pathogenesis of ASD.

View Article and Find Full Text PDF

Background: Rats with a loss-of-function mutation in the contactin-associated protein-like 2 () gene have been validated as an animal model of autism spectrum disorder (ASD). Similar to many autistic individuals, knock-out rats () are hyperreactive to sound as measured through the acoustic startle response. The brainstem region that mediates the acoustic startle response is the caudal pontine reticular nucleus (PnC), specifically giant neurons in the PnC.

View Article and Find Full Text PDF

Our brains have a propensity to integrate closely-timed auditory and visual stimuli into a unified percept; a phenomenon that is highly malleable based on prior sensory experiences, and is known to be altered in clinical populations. While the neural correlates of audiovisual temporal perception have been investigated using neuroimaging and electroencephalography techniques in humans, animal research will be required to uncover the underlying cellular and molecular mechanisms. Prior to conducting such mechanistic studies, it is important to first confirm the translational potential of any prospective animal model.

View Article and Find Full Text PDF

Many neurodevelopmental disorders, including autism spectrum disorder (ASD), are associated with changes in sensory processing and sensorimotor gating. The acoustic startle response and prepulse inhibition (PPI) of startle are widely used translational measures for assessing sensory processing and sensorimotor gating, respectively. The Cntnap2 knockout (KO) rat has proven to be a valid model for ASD, displaying core symptoms, including sensory processing perturbations.

View Article and Find Full Text PDF

Ischemic stroke affects millions of individuals worldwide and a high prevalence of survivors experience cognitive deficits. At present, the underlying mechanisms that drive post-stroke cognitive decline are not well understood. Microglia play a critical role in the post-stroke inflammatory response, but experimental studies show that an accumulation of chronically activated microglia can be harmful and associates with cognitive impairment.

View Article and Find Full Text PDF

The neural integration of closely timed auditory and visual stimuli can offer several behavioral advantages; however, an overly broad window of temporal integration-a phenomenon observed in various neurodevelopmental disorders-could have far-reaching perceptual consequences. Non-invasive studies in humans have suggested that the level of GABAergic inhibition in the multisensory cortex influences the temporal window over which auditory and visual stimuli are bound into a unified percept. Although this suggestion aligns with the theory that an imbalance of cortical excitation and inhibition alters multisensory processing, no prior studies have performed experimental manipulations to determine the causal effects of a reduction of GABAergic inhibition on audiovisual temporal perception.

View Article and Find Full Text PDF

Disruptions in the gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of rats, hypothesizing that is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex.

View Article and Find Full Text PDF

In an effort to help elucidate the neural mechanisms underlying tinnitus in humans, researchers have often relied on animal models; a preclinical approach which ultimately required that behavioral paradigms be designed to reliably screen animals for tinnitus. Previously, we developed a two-alternative forced-choice (2AFC) paradigm for rats that allowed for the simultaneous recording of neural activity at the very moments when they were reporting the presence/absence of tinnitus. Because we first validated our paradigm in rats experiencing transient tinnitus following a high-dose of sodium salicylate, the present study now sought to evaluate its utility to screen for tinnitus caused by intense sound exposure; a common tinnitus-inducer in humans.

View Article and Find Full Text PDF

Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring.

View Article and Find Full Text PDF

The contactin-associated protein-like 2 (CNTNAP2) gene encodes for the CASPR2 protein, which plays an essential role in neurodevelopment. Mutations in CNTNAP2 are associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. Rats with a loss of function mutation in the Cntnap2 gene show increased acoustic startle response (ASR) and decreased prepulse inhibition (PPI).

View Article and Find Full Text PDF

Hearing loss is a chronic health condition that affects millions of people worldwide. In addition to age-related hearing impairment, excessive noise exposure is a leading cause of hearing loss. Beyond the devastating effects of hearing impairment itself, epidemiological studies have identified hearing loss as a major risk factor for age-related cognitive decline, including dementia.

View Article and Find Full Text PDF

RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these patterns. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by viruses relaxes the strength of purifying selection and thereby increases the rate of deleterious mutation accumulation.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) poses a significant health concern for both mother and offspring. Exercise has emerged as a cornerstone of glycemic management in GDM. However, most research regarding this topic examines aerobic training (AT), despite substantial evidence for the effectiveness of resistance training (RT) in improving dysregulated glucose in other groups of people with diabetes, such as in type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition.

View Article and Find Full Text PDF

Maternal infections during pregnancy are linked with an increased risk for disorders like Autism Spectrum Disorder and schizophrenia in the offspring. Although precise mechanisms are still unclear, clinical and preclinical evidence suggest a strong role for maternal immune activation (MIA) in the neurodevelopmental disruptions caused by maternal infection. Previously, studies using the Polyinosinic:Polycytidylic (Poly I:C) MIA preclinical model showed that cytokines like Interleukin 6 (Il6) are important mediators of MIA's effects.

View Article and Find Full Text PDF

Automatic identification and sorting of livestock organs in the meat processing industry could reduce costs and improve efficiency. Two hyperspectral sensors encompassing the visible (400-900 nm) and short-wave infrared (900-1700 nm) spectra were used to identify the organs by type. A total of 104 parenchymatous organs of cattle and sheep (heart, kidney, liver, and lung) were scanned in a multi-sensory system that encompassed both sensors along a conveyor belt.

View Article and Find Full Text PDF

The contactin-associated protein-like 2 gene, CNTNAP2, is a highly penetrant risk gene thought to play a role in the genetic etiology of language-related disorders, such as autism spectrum disorder and developmental language disorder. Despite its candidacy for influencing language development, few preclinical studies have examined the role of CNTNAP2 in auditory processing. Using in vivo and in vitro electrophysiological recordings in a rat model with translational validity, we report that a loss of the Cntnap2 gene function caused immature-like cortical evoked potentials, delayed multiunit response latencies to acoustic stimuli, impaired temporal processing, and led to a pattern of hyperexcitability in both multiunit and single cell recordings in adulthood.

View Article and Find Full Text PDF

The purpose of this study was to determine the effect of exercise during pregnancy in sedentary women with obesity on longitudinal changes in long-chain acylcarnitine (LC-AC) concentrations. We hypothesized that exercise training would significantly decrease circulating LC-ACs throughout gestation compared with a nonexercise control group. Pregnant women with obesity considered otherwise healthy [ = 80, means ± SD; body mass index (BMI): 36.

View Article and Find Full Text PDF

Neuroinflammation and behavioural inflexibility are both common in late adulthood but far more profound in Alzheimer disease (AD). To investigate the relationship between ageing, AD, neuroinflammation, and behavioural flexibility, male wild-type Fischer 344 (Wt) and the transgenic APP21 (TgAPP21) rats were aged to 4, 8, 13, and 22 months and evaluated for neuroinflammation and cognitive impairment. TgAPP21 rats overexpress a pathogenic variant of the human amyloid precursor protein (hAPP; Swedish and Indiana mutations) but do not spontaneously develop overt pathology related to AD.

View Article and Find Full Text PDF

Animal models are frequently used to characterize the within-host dynamics of emerging zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples originating from experimental challenges to gain a better understanding of how these viruses may evolve in vivo and between transmission events. These studies have often identified nucleotide variants that can replicate more efficiently within hosts and also transmit more effectively between hosts.

View Article and Find Full Text PDF