Publications by authors named "Allix M Sanders"

A novel hemostatic and absorbent wound dressing material compatible with 3D printing is developed to address deficiencies in current wound dressing protocol. The design involves an open celled, microporous hydrogel foam via a high internal phase emulsion (HIPE) template with biocompatible components and tunable hemostatic character by kaolin loading, the viscosity and cure kinetics of which are tailored for 3D printing applications. The use of nontoxic mineral oil organic phase results in cytocompatability with human dermal fibroblasts.

View Article and Find Full Text PDF

In recent years, there has been dramatic growth in the study of RNA. RNA has gone from being known as an intermediate in the central dogma of molecular biology to a molecule with a large diversity of structure and function that is involved in all aspects of biology. As new functions are rapidly discovered, it has become clear that there is a need for RNA-targeting small molecule probes to investigate RNA biology and clarify the potential for therapeutics based on RNA-small molecule interactions.

View Article and Find Full Text PDF

We present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution.

View Article and Find Full Text PDF

We report the synthesis, self-assembly, and electron transfer capabilities of peptide-based electron donor-acceptor molecules and supramolecular nanostructures. These modified peptides contain π-conjugated oligothiophene electron donor cores that are peripherally substituted with naphthalene diimide electron acceptors installed via imidation of site-specific lysine residues. These molecules self-assemble into one-dimensional nanostructures in aqueous media, as shown through steady-state absorption, photoluminescence, and circular dichroism spectra, as well as transmission electron microscopy.

View Article and Find Full Text PDF

We present a systematic study of the photophysical properties of one-dimensional electronically delocalized nanostructures assembled from π-conjugated subunits embedded within oligopeptide backbones. The nature of the excited states within these nanostructures is studied as a function of primary amino acid sequence utilizing steady-state and time-resolved spectroscopies, and their atomistic structure is probed by molecular simulation. Variations introduced into the amino acid side chains at specific residue locations along the molecular peptide backbone lead to pronounced changes in the observed photophysical behavior of the fibrillar structures (spanning H-like excitonic coupling and disordered excimeric coupling) that arise from subtle changes in the π-stacking within them.

View Article and Find Full Text PDF

We report a streamlined method for the synthesis of peptides embedded with complex and easily variable π-conjugated oligomeric subunits from commercially available precursors. These modified peptides self-assemble under aqueous conditions to form one-dimensional nanomaterials containing networks of π-stacked conduits, despite the inclusion of π-conjugated oligomers with quadrupoles extended over larger areas. The procedure has circumvented solubility and other synthetic issues to allow for the facile formation of a diverse library of bioelectronic nanomaterials, including a complex sexithiophene-containing peptide whose nanostructures display gate-induced conductivity within field effect transistors.

View Article and Find Full Text PDF