Publications by authors named "Allison Theus"

When shed from the cell surface, the heparan sulfate proteoglycan syndecan-1 can facilitate the growth, angiogenesis, and metastasis of tumors. Here we report that tumor cell expression of heparanase, an enzyme known to be a potent promoter of tumor progression and metastasis, regulates both the level and location of syndecan-1 within the tumor microenvironment by enhancing its synthesis and subsequent shedding from the tumor cell surface. Heparanase regulation of syndecan-1 is detected in both human myeloma and breast cancer cell lines.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs), via their interactions with numerous effector molecules such as FGF-2, IL-8, and VEGF, regulate the biological activity of cells by acting as co-receptors that promote signaling. The extent and nature of their role as co-receptors is often misregulated in cancer as manifested by alterations in HSPG structure and expression level. This misregulation of HSPGs can aid in promoting the malignant phenotype.

View Article and Find Full Text PDF

Although widespread skeletal dissemination is a critical step in the progression of myeloma, little is known regarding mechanisms that control metastasis of this cancer. Heparanase-1 (heparanase), an enzyme that cleaves heparan sulfate chains, is expressed at high levels in some patients with myeloma and promotes metastasis of some tumor types (eg, breast, lymphoma). Using a severe combined immunodeficient (SCID) mouse model, we demonstrate that enhanced expression of heparanase by myeloma cells dramatically up-regulates their spontaneous metastasis to bone.

View Article and Find Full Text PDF

The soluble form of the syndecan-1 heparan sulfate proteoglycan acts as a tumor suppressor molecule that inhibits growth and induces apoptosis of some cancer cell lines in vitro. Analogs of syndecan-1 were produced by carbodiimide (EDAC) conjugation of glycosaminoglycan (GAG) chains to a protein scaffold, thereby generating synthetic proteoglycans that were evaluated for anticancer properties. Surprisingly, when analyzing activities of the controls, we discovered that EDAC modified GAG chains inhibit myeloma cell viability even in the absence of protein.

View Article and Find Full Text PDF

Syndecan-1 (CD138) is a transmembrane heparan sulfate-bearing proteoglycan expressed by most myeloma plasma cells that regulates adhesion, migration, and growth factor activity. In patients with myeloma, shed syndecan-1 accumulates in the bone marrow, and high levels of syndecan-1 in the serum are an indicator of poor prognosis. To test the effect of soluble syndecan-1 on tumor cell growth and dissemination, ARH-77 B-lymphoid cells were engineered to produce a soluble form of syndecan-1.

View Article and Find Full Text PDF