Vocalizations play a significant role in social communication across species. Analyses in rodents have used a limited number of spectro-temporal measures to compare ultrasonic vocalizations (USVs), which limits the ability to address repertoire complexity in the context of behavioral states. Using an automated and unsupervised signal processing approach, we report the development of MUPET (Mouse Ultrasonic Profile ExTraction) software, an open-access MATLAB tool that provides data-driven, high-throughput analyses of USVs.
View Article and Find Full Text PDFUnlabelled: Trauma- and stress-related disorders are clinically heterogeneous and associated with substantial genetic risk. Understanding the biological origins of heterogeneity of key intermediate phenotypes such as cognition and emotion can provide novel mechanistic insights into disorder pathogenesis. Performing quantitative genetics in animal models is a tractable strategy for examining both the genetic basis of intermediate phenotypes and functional testing of candidate quantitative traits genes (QTGs).
View Article and Find Full Text PDFSocial behavior modulates response to alcohol. Because oxytocin (OXT) and vasopressin (AVP) contribute to rewarding social behavior, the present study utilized a genetic strategy to determine whether OXT and AVP receptors (OXTR, AVPR1a) are essential for female mice to demonstrate a conditioned social preference for ethanol. The study compared wild-type (WT) and knock-out (KO) females lacking either Oxtr or Avpr1a in a conditioned social preference (CSP) test.
View Article and Find Full Text PDFBoth the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals.
View Article and Find Full Text PDFBackground: The kappa opioid receptor (KOR) system contributes to the prodepressive and aversive consequences of stress and is implicated in the facilitation of conditioned fear and anxiety in rodents. Here, we sought to identify neural circuits that mediate KOR system effects on fear and anxiety in rats.
Methods: We assessed whether fear conditioning induces plasticity in KOR or dynorphin (the endogenous KOR ligand) messenger RNA (mRNA) expression in the basolateral (BLA) and central (CeA) nuclei of the amygdala, hippocampus, or striatum.
Stress is most often associated with aversive states. It rapidly induces the release of hormones and neuropeptides including dynorphin, which activates kappa opioid receptors (KORs) in the central and peripheral nervous systems. In animal models, many aversive effects of stress are mimicked or exacerbated by stimulation of KORs in limbic brain regions.
View Article and Find Full Text PDFThe biological basis of mood is not understood. Most research on mood and affective states has focused on the roles of brain systems containing monoamines (e.g.
View Article and Find Full Text PDFEndogenous opioid systems regulate neurobiological responses to threatening stimuli. Stimulation of kappa-opioid receptors (KORs) produces analgesia but induces prodepressive-like effects in a variety of animal models. In contrast, KOR antagonists have antidepressant-like effects.
View Article and Find Full Text PDFThe neuropeptide corticotropin-releasing factor (CRF) is believed to play a role in a number of psychiatric conditions, including anxiety disorders and depression. In the present study, male Sprague Dawley rats were used to examine the behavioral effects of altering dopamine transmission on CRF-enhanced startle, a behavioral assay believed to reflect stress- or anxiety-like states. Systemic administration of the selective dopamine D1 receptor antagonist SCH 23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride] (0, 0.
View Article and Find Full Text PDF