Publications by authors named "Allison Sowa"

Article Synopsis
  • Psychosocial stress significantly impacts bodily functions, particularly affecting the immune system and brain, linking it to stress-related issues like major depressive disorder (MDD).
  • Researchers found that the protein matrix metalloproteinase 8 (MMP8) is elevated in both humans with MDD and stress-susceptible mice, influencing brain structure and behavior.
  • The study suggests that targeting immune-derived MMP8 could offer new treatment options for neuropsychiatric disorders triggered by stress.
View Article and Find Full Text PDF

The interplay between AMPA-type glutamate receptors (AMPARs) and major histocompatibility complex class I (MHC-I) proteins in regulating synaptic signaling is a crucial aspect of central nervous system (CNS) function. In this study, we investigate the significance of the cytoplasmic tail of MHC-I in synaptic signaling within the CNS and its impact on the modulation of synaptic glutamate receptor expression. Specifically, we focus on the Y321 to F substitution (Y321F) within the conserved cytoplasmic tyrosine YXXΦ motif, known for its dual role in endocytosis and cellular signaling of MHC-I.

View Article and Find Full Text PDF

While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells.

View Article and Find Full Text PDF

Brain cell structure is a key determinant of neural function that is frequently altered in neurobiological disorders. Following the global loss of blood flow to the brain that initiates the postmortem interval (PMI), cells rapidly become depleted of energy and begin to decompose. To ensure that our methods for studying the brain using autopsy tissue are robust and reproducible, there is a critical need to delineate the expected changes in brain cell morphometry during the PMI.

View Article and Find Full Text PDF

Major histocompatibility complex class I (MHC-I) proteins are expressed in neurons, where they regulate synaptic plasticity. However, the mechanisms by which MHC-I functions in the CNS remains unknown. Here we describe the first structural analysis of a MHC-I protein, to resolve underlying mechanisms that explains its function in the brain.

View Article and Find Full Text PDF

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD), the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS).

View Article and Find Full Text PDF

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.

View Article and Find Full Text PDF

The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy).

View Article and Find Full Text PDF

High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration.

View Article and Find Full Text PDF

Major histocompatibility complex class I (MHCI) proteins have been implicated in neuronal function through the modulation of neuritogenesis, synaptogenesis, synaptic plasticity, and memory consolidation during development. However, the involvement of MHCI in the aged brain is unclear. Here we demonstrate that MHCI deficiency results in significant dendritic atrophy along with an increase in thin dendritic spines and a reduction in stubby spines in the hippocampus of aged (12 month old) mice.

View Article and Find Full Text PDF

Background: Mounting evidence suggests that soluble oligomers of amyloid-β (oAβ) represent the pertinent synaptotoxic form of Aβ in sporadic Alzheimer's disease (AD); however, the mechanistic links between oAβ and synaptic degeneration remain elusive. Most in vivo experiments to date have been limited to examining the toxicity of oAβ in mouse models that also possess insoluble fibrillar Aβ (fAβ), and data generated from these models can lead to ambiguous interpretations. Our goal in the present study was to examine the effects of soluble oAβ on neuronal and synaptic structure in the amyloid precursor protein (APP) E693Q ("Dutch") mouse model of AD, which develops intraneuronal accumulation of soluble oAβ with no detectable plaques in AD-relevant brain regions.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD.

View Article and Find Full Text PDF