Predatory outer membrane vesicles (OMVs) secreted by myxobacteria fuse readily with the outer membranes of Gram-negative bacteria, introducing toxic cargo into their prey. Here we used a strain of the myxobacterium that produces fluorescent OMVs to assay the uptake of OMVs by a panel of Gram-negative bacteria. strains took up significantly less OMV material than the tested prey strains, suggesting that re-fusion of OMVs with producing organisms is somehow inhibited.
View Article and Find Full Text PDFMyxobacteria prey upon a broad range of microorganisms. Lawn assays are commonly used to quantify myxobacterial predation-myxobacterial suspensions are spotted onto prey lawns, and monitored via spot expansion. The diversity in motility behaviours of myxobacterial strains and differing assay protocols in myxobacteriology laboratories led us to develop a highly-specified assay, which was applied to 28 myxobacterial strains preying on seven phytopathogenic prey species.
View Article and Find Full Text PDFHedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation.
View Article and Find Full Text PDFInteins mediate protein splicing, which has found extensive applications in protein science and biotechnology. In the Mycobacterium tuberculosis RecA mini-mini intein (ΔΔIhh), a single valine to leucine substitution at position 67 (V67L) dramatically increases intein stability and activity. However, crystal structures show that the V67L mutation causes minimal structural rearrangements, with a root-mean-square deviation of 0.
View Article and Find Full Text PDFAnnelida represents a large and morphologically diverse group of bilaterian organisms. The recently published polychaete and leech genome sequences revealed an equally dynamic range of diversity at the genomic level. The availability of more annelid genomes will allow for the identification of evolutionary genomic events that helped shape the annelid lineage and better understand the diversity within the group.
View Article and Find Full Text PDF