Publications by authors named "Allison R Mason"

mpactR automates pre-processing of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data from microbiological samples to correct mispicked peaks, resolve inter-sample variation in abundance across technical replicates, account for in-source ion fragmentation, and remove background noise to yield high-quality mass spectrometry features. The package is available through CRAN and GitHub.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial succession has potential to enhance postmortem interval (PMI) estimation methods for human remains, especially since traditional methods have limitations.
  • Previous machine learning models based on soil microbes have shown PMI errors ranging from 2.5 to 6 days, but they neglected environmental factors affecting microbial presence.
  • This study evaluated how including environmental data (like temperature and soil pH) impacts the accuracy of microbial-based PMI predictions, finding that models using bacterial data (16S) were more accurate than those using fungal data (ITS), and environmental factors varied in their influence on different biological markers.
View Article and Find Full Text PDF

Human decomposition in terrestrial ecosystems is a dynamic process creating localized hot spots of soil microbial activity. Longer-term (beyond a few months) impacts on decomposer microbial communities are poorly characterized and do not typically connect microbial communities to biogeochemistry, limiting our understanding of decomposer communities and their functions. We performed separate year-long human decomposition trials, one starting in spring, another in winter, integrating bacterial and fungal community structure and abundances with soil physicochemistry and biogeochemistry to identify key drivers of microbial community change.

View Article and Find Full Text PDF

Vertebrate decomposition results in an ephemeral disturbance of the surrounding environment. Microbial decomposers are recognized as key players in the breakdown of complex organic compounds, controlling carbon and nutrient fate in the ecosystem and potentially serving as indicators of time since death for forensic applications. As a result, there has been increasing attention on documenting the microbial communities associated with vertebrate decomposition, or the 'necrobiome'.

View Article and Find Full Text PDF

Microorganisms are key decomposers of vertebrate mortalities, breaking down body tissues and impacting decomposition progress. During human decomposition, both extrinsic environmental factors and intrinsic cadaver-related factors have the potential to impact microbial decomposers either directly or indirectly via altered physical or chemical conditions. While extrinsic factors (e.

View Article and Find Full Text PDF

Decomposing vertebrates, including humans, result in pronounced changes in surrounding soil biogeochemistry, particularly nitrogen (N) and carbon (C) availability, and alter soil micro- and macrofauna. However, the impacts of subsurface human decomposition, where oxygen becomes limited and microbial biomass is generally lower, are far less understood. The goals of this study were to evaluate the impact of human decomposition in a multi-individual, shallow (~70 cm depth) grave on soil biogeochemistry and soil microbial and nematode communities.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm6qusaqsg6i3vhdlvl7prqdavfqret0a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once