Wireless communication technologies for bioelectronic implants enable remote monitoring for diagnosis and adaptive therapeutic intervention without the constraints of wired connections. However, wireless data uplink from millimeter-scale devices deep in the body struggles to achieve low power consumption while maintaining large misalignment tolerances. Here, we report a passive wireless backscatter communication system based on magnetoelectric transducers that consumes less than 0.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
January 2023
This paper presents a novel approach to synthesize a standard 12-lead electrocardiogram (ECG) from any three independent ECG leads using a patient-specific encoder-decoder convolutional neural network. The objective is to decrease the number of recording locations required to obtain the same information as a 12-lead ECG, thereby enhancing patients' comfort during the recording process. We evaluate the proposed algorithm on a dataset comprising fifteen patients, as well as a randomly selected cohort of patients from the PTB diagnostic database.
View Article and Find Full Text PDFAtrial fibrillation (A-fib) is the most common type of heart arrhythmia, typically treated with radiofrequency catheter ablation to isolate the heart from abnormal electrical signals. Monitoring the formation of ablation-induced lesions is crucial for preventing recurrences and complications arising from excessive or insufficient ablation. Existing imaging modalities lack real-time feedback, and their intraoperative usage is in its early stages.
View Article and Find Full Text PDFThere is an urgent clinical need for a treatment regimen that addresses the underlying pathophysiology of ventricular arrhythmias, the leading cause of sudden cardiac death. The current report describes the design of an injectable hydrogel electrode and successful deployment in a pig model with access far more refined than any current pacing modalities allow. In addition to successful cardiac capture and pacing, analysis of surface ECG tracings and three-dimensional electroanatomic mapping revealed a QRS morphology comparable to native sinus rhythm, strongly suggesting the hydrogel electrode captures the deep septal bundle branches and Purkinje fibers.
View Article and Find Full Text PDFACM J Emerg Technol Comput Syst
April 2022
There exists a gap in terms of the signals provided by pacemakers (i.e., intracardiac electrogram (EGM)) and the signals doctors use (i.
View Article and Find Full Text PDFCardiac electrophysiology requires the processing of several patient-specific data points in real time to provide an accurate diagnosis and determine an optimal therapy. Expanding beyond the traditional tools that have been used to extract information from patient-specific data, machine learning offers a new set of advanced tools capable of revealing previously unknown data patterns and features. This new tool set can substantially improve the speed and level of confidence with which electrophysiologists can determine patient-specific diagnoses and therapies.
View Article and Find Full Text PDFIntroduction: In radiofrequency ablation procedures for cardiac arrhythmia, the efficacy of creating repeated lesions at the same location ("insurance lesions") remains poorly studied. We assessed the effect of type of tissue, power, and time on the resulting lesion geometry during such multiple ablation procedures.
Methods: A custom ex vivo ablation model was used to assess lesion formation.
IEEE Trans Biomed Eng
October 2022
Objective: Local activation time (LAT) mapping of cardiac chambers is vital for targeted treatment of cardiac arrhythmias in catheter ablation procedures. Current methods require too many LAT observations for an accurate interpolation of the necessarily sparse LAT signal extracted from intracardiac electrograms (EGMs). Additionally, conventional performance metrics for LAT interpolation algorithms do not accurately measure the quality of interpolated maps.
View Article and Find Full Text PDFCardiac arrhythmias are a leading cause of morbidity and mortality in the developed world. A common mechanism underlying many of these arrhythmias is re-entry, which may occur when native conduction pathways are disrupted, often by myocardial infarction. Presently, re-entrant arrhythmias are most commonly treated with antiarrhythmic drugs and myocardial ablation, although both treatment methods are associated with adverse side effects and limited efficacy.
View Article and Find Full Text PDFWe propose a novel convolutional neural network framework for mapping a multivariate input to a multivariate output. In particular, we implement our algorithm within the scope of 12-lead surface electrocardiogram (ECG) reconstruction from intracardiac electrograms (EGM) and vice versa. The goal of performing this task is to allow for improved point-of-care monitoring of patients with an implanted device to treat cardiac pathologies.
View Article and Find Full Text PDFCardiovasc Drugs Ther
April 2023
Cardiac arrhythmias are a leading cause of morbidity and mortality in the developed world, estimated to be responsible for hundreds of thousands of deaths annually. Our understanding of the electrophysiological mechanisms of such arrhythmias has grown since they were formally characterized in the late nineteenth century, and this has led to the development of numerous devices and therapies that have markedly improved outcomes for patients affected by such conditions. Despite these advancements, the application of a single large shock remains the clinical standard for treating deadly tachyarrhythmias.
View Article and Find Full Text PDFBackground: Bipolar radiofrequency (RF) ablation strategies are increasingly used, mainly to target deep myocardial reentrant circuits responsible for ventricular tachycardia that cannot be extinguished with traditional unipolar RF ablation. Because this strategy is novel, factors that affect lesion geometry and steam pop formation require further investigation.
Objective: To assess the effect of contact force, power, and time on the resulting lesion geometry and the risk of steam pop formation during bipolar RF ablation of thick myocardial tissue.
Introduction: Few studies have examined heat transfer and thermal injury on the epiesophageal surface during radiofrequency application, or compared the risk of esophageal thermal injury between standard and high-power, short-duration (HPSD) ablation. We studied the thermodynamics of HPSD and standard ablation at different tissue interfaces between the left atrium and esophagus, focusing on epiesophageal temperature changes and thermal injury.
Methods And Results: Fresh porcine heart and esophageal sections were secured to a custom holder and submerged in a temperature-controlled, circulating water bath.
Ethanol solubilizes cell membranes, making it useful for various ablation applications. We examined the effect of time and alcohol type on the extent of ablation, quantified as Euclidean distances between color coordinates. We obtained biopsy punch samples (diameter, 6 mm) of left atrial appendage, atrial, ventricular, and septal tissue from porcine hearts and placed them in transwell plates filled with ethanol or methanol for 10, 20, 30, 40, 50, or 60 min.
View Article and Find Full Text PDFBioprosthetic valves (BPVs) have a limited lifespan in the body necessitating repeated surgeries to replace the failed implant. Early failure of these implants has been linked to various surface properties of the valve. Surface properties of BPVs are significantly different from physiological valves because of the fixation process used when processing the xenograft tissue.
View Article and Find Full Text PDFPacing Clin Electrophysiol
June 2020
Background: Pericardial access is complicated by two difficulties: confirming when the needle tip is in the pericardial space, and avoiding complications during access, such as inadvertently puncturing other organs. Conventional imaging tools are inadequate for addressing these difficulties, as they lack soft-tissue markers that could be used as guidance during access. A system that can both confirm access and avoid inadvertent organ injury is needed.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAbout 30% of patients with impaired cardiac function have ventricular dyssynchrony and seek cardiac resynchronization therapy (CRT). In this study, we demonstrate synchronized biventricular (BiV) pacing in a leadless fashion by implementing miniaturized and wirelessly powered pacemakers. With their flexible form factors, two pacemakers were implanted epicardially on the right and left ventricles of a porcine model and were inductively powered at 13.
View Article and Find Full Text PDFThere is a growing clinical need to address high failure rates of small diameter (<6 mm) synthetic vascular grafts. Although there is a strong empirical correlation between low patency rates and low compliance of synthetic grafts, the mechanism by which compliance mismatch leads to intimal hyperplasia is poorly understood. To elucidate this relationship, synthetic vascular grafts were fabricated that varied compliance independent of other graft variables.
View Article and Find Full Text PDFDespite advances in the development of materials for cardiovascular devices, current strategies generally lack the thromboresistance of the native endothelium both in terms of efficacy and longevity. To harness this innate hemostatic regulation and improve long-term hemocompatibility, biohybrid devices are designed to promote endothelialization. Much of the research effort to date has focused on the use of extracellular matrix (ECM)-mimics and coatings to promote endothelial cell adhesion and migration with less attention given to the effect of the supported ECM binding events on hemostatic regulation.
View Article and Find Full Text PDFSustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM).
View Article and Find Full Text PDFUnlabelled: Small-caliber vascular grafts used in coronary artery bypass procedures typically fail due to the development of intimal hyperplasia or thrombosis. Our laboratory has developed a multilayered vascular graft with an electrospun polyurethane outer layer with improved compliance matching and a hydrogel inner layer that is both thromboresistant and promotes endothelialization. Initial in vivo studies showed that hydrogel particulates were dislodged from the hydrogel layer of the grafts during suturing.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
September 2016
Studies involving turbulent flow have been carried out in many parts of the cardiovascular system, and it has been widely reported that turbulence related to stenosis (narrowing) of arteries creates audible sounds, which may be analyzed to yield information about the nature and severity of the blockage. Results so far indicate that the high frequency content of the sounds generally increases with the degree of stenosis. In this paper, we designed and built an MEMs microphone array and a signal acquisition board to improve the detection of coronary occlusions using an approach based on the recording and analysis of isolated diastolic heart sounds associated with turbulent blood flow in occluded coronary arteries.
View Article and Find Full Text PDFValve endothelial cells (VEC) have unique phenotypic responses relative to other types of vascular endothelial cells and have highly sensitive hemostatic functions affected by changes in valve tissues. Furthermore, effects of environmental factors on VEC hemostatic function has not been characterized. This work used a poly(ethylene glycol) diacrylate (PEGDA) hydrogel platform to evaluate the effects of substrate stiffness and cell adhesive ligands on VEC phenotype and expression of hemostatic genes.
View Article and Find Full Text PDF