Publications by authors named "Allison Pine"

Standard scATAC sequencing (scATAC-seq) analysis pipelines represent cells as sparse numeric vectors relative to an atlas of peaks or genomic tiles and consequently ignore genomic sequence information at accessible loci. Here we present CellSpace, an efficient and scalable sequence-informed embedding algorithm for scATAC-seq that learns a mapping of DNA k-mers and cells to the same space, to address this limitation. We show that CellSpace captures meaningful latent structure in scATAC-seq datasets, including cell subpopulations and developmental hierarchies, and can score transcription factor activities in single cells based on proximity to binding motifs embedded in the same space.

View Article and Find Full Text PDF

Unlabelled: The tumor microenvironment is necessary for recapitulating the intratumoral heterogeneity and cell state plasticity found in human primary glioblastoma (GBM). Conventional models do not accurately recapitulate the spectrum of GBM cellular states, hindering elucidation of the underlying transcriptional regulation of these states. Using our glioblastoma cerebral organoid model, we profiled the chromatin accessibility of 28,040 single cells in five patient-derived glioma stem cell lines.

View Article and Find Full Text PDF

CD8 T cells play an essential role in defense against viral and bacterial infections and in tumor immunity. Deciphering T cell loss of functionality is complicated by the conspicuous heterogeneity of CD8 T cell states described across experimental and clinical settings. By carrying out a unified analysis of over 300 assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) experiments from 12 studies of CD8 T cells in cancer and infection, we defined a shared differentiation trajectory toward dysfunction and its underlying transcriptional drivers and revealed a universal early bifurcation of functional and dysfunctional T cell states across models.

View Article and Find Full Text PDF

Human cancers arise through the sequential acquisition of somatic mutations that create successive clonal populations. Human cancer evolution models could help illuminate this process and inform therapeutic intervention at an early disease stage, but their creation has faced significant challenges. Here, we combined induced pluripotent stem cell (iPSC) and CRISPR-Cas9 technologies to develop a model of the clonal evolution of acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Glioblastoma (GBM), an incurable tumor, remains difficult to model and more importantly to treat due to its genetic/epigenetic heterogeneity and plasticity across cellular states. The ability of current tumor models to recapitulate the cellular states found in primary tumors remains unexplored. To address this issue, we compared single-cell RNA sequencing of tumor cells from 5 patients across four patient-specific glioblastoma stem cell (GSC)-derived model types, including glioma spheres, tumor organoids, glioblastoma cerebral organoids (GLICO), and patient-derived xenografts.

View Article and Find Full Text PDF

Polymeric hydrogel microparticle-based suspension arrays with shape-based encoding offer powerful alternatives to planar and bead-based arrays toward high throughput biosensing and medical diagnostics. We report a simple and robust micromolding technique for polyacrylamide- (PAAm-) based biopolymeric-synthetic hybrid microparticles with controlled 2D shapes containing a potent aminopolysaccharide chitosan as an efficient conjugation handle uniformly incorporated in PAAm matrix. A postfabrication conjugation approach utilizing amine-reactive chemistries on the chitosan shows stable incorporation and retained chemical reactivity of chitosan, readily tunable macroporous structures via simple addition of low content long-chain PEG porogens for improved conjugation capacity and kinetics, and one-pot biomacromolecular assembly via bioorthogonal click reactions with minimal nonspecific binding.

View Article and Find Full Text PDF