Preserving and enhancing the primary function of transplanted islets is not only crucial for improving the outcome of the islet transplantation, but is also important for reducing the islet mass required to achieve insulin independence. Uncoupling protein 2 (UCP2) is a member of the uncoupling protein family, which is localized to the inner mitochondrial membrane and negatively regulates insulin secretion in the pancreatic β-cells. In this study, we assessed the importance of UCP2 in improving islet graft primary function by using UCP2 gene-knockout (UCP2-KO) mice in a syngeneic islet transplantation model.
View Article and Find Full Text PDFRecent studies have demonstrated that in peripheral lymphoid tissues of normal mice and healthy humans, 1% to 5% of alphabeta T-cell receptor-positive (TCR(+)) T cells are CD4(-)CD8(-) (double-negative [DN]) T cells, capable of down-regulating immune responses. However, the origin and developmental pathway of DN T cells is still not clear. In this study, by monitoring CD4 expression during T-cell proliferation and differentiation, we identified a new differentiation pathway for the conversion of CD4(+) T cells to DN regulatory T cells.
View Article and Find Full Text PDF