Publications by authors named "Allison Lau"

Background: Studies of aging in non-human primates are important to elucidate primate-specific mechanisms underlying human aging, including pathological trajectories like Alzheimer's disease (AD). Evidence of AD-like brain aging has been reported across the primate order including amyloid beta (AB) deposits, but blood-based biomarkers are less well-studied. The goal of this project was to explore the use of validated assays for plasma biomarkers in two new non-human primate species: coppery titi monkeys (Plecturocebus cupreus) and brown capuchins (Sapajus apella).

View Article and Find Full Text PDF
Article Synopsis
  • Aging leads to cellular damage and mitochondrial dysfunction, impacting metabolism and contributing to age-related diseases.
  • The cofactor NAD decreases in tissues with age and is crucial for various metabolic pathways, yet its levels and ratio to NADH remained stable during healthy aging in mice studied.
  • Research showed that older tissues, especially in the brain, increased fatty acid and sphingolipid metabolism, helping to maintain NAD levels, which could be essential for healthy aging.
View Article and Find Full Text PDF
Article Synopsis
  • Metastases originate from specific subsets of cancer cells that spread from the primary tumor, with their ability to thrive in new locations being impacted by genetic and epigenetic changes.
  • Certain types of cancers tend to consistently metastasize to particular tissues, indicating that the characteristics of the primary tumor play a role in determining metastatic sites.
  • Research shows that both primary and metastatic pancreatic tumors share metabolic traits and that cancer cells prefer to grow in their original site rather than in new metastatic locations, highlighting the influence of the tumor's tissue of origin on its growth and spread.
View Article and Find Full Text PDF

Primates live in a variety of social groupings and vary in the expression of species-typical behaviors depending upon social conditions. Coppery titi monkeys () are pair-bonding, territorial primates often used to study neurobiology and social behavior in captivity at the California National Primate Research Center (CNPRC). At the center, titi monkeys are housed in cages of standardized size.

View Article and Find Full Text PDF

Social bonds influence physiology and behavior, which can shape how individuals respond to physical and affective challenges. Coppery titi monkey (Plecturocebus cupreus) offspring form selective bonds with their fathers, making them ideal for investigating how father-daughter bonds influence juveniles' responses to oxytocin (OT) and arginine-vasopressin (AVP) manipulations. We quantified the expression of father-daughter bond-related behaviors in females (n = 10) and gave acute intranasal treatments of saline, low/medium/high OT, low/high AVP, or an OT receptor antagonist (OTA) to subjects prior to a parent preference test.

View Article and Find Full Text PDF

Aging is accompanied by multiple molecular changes that contribute to aging-associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part because mitochondria are central to cellular metabolism. Moreover, the co-factor NAD, which is reported to decline across multiple tissue types during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Strong social bonds are critical to human health; however, the mechanisms by which social bonds are formed and maintained are still being elucidated. The neurohormones oxytocin (OT) and vasopressin (AVP) are considered likely candidates. Primate females, both human and nonhuman, remain understudied populations.

View Article and Find Full Text PDF

Social interactions regulate our behavior and physiology, and strong social bonds can buffer us from stress. Coppery titi monkeys (Plecturocebus cupreus) are socially monogamous South American monkeys that display strong social bonds. Infants form selective bonds with their fathers, making them ideal for studying father-daughter bonds.

View Article and Find Full Text PDF

Behavioral compatibility plays a critical role in shaping how potential mates interact with and evaluate each other and whether they choose to pursue a relationship. Compatibility is especially important for mate choice and relationship quality in pair-bonding species that form long-term attachments between mates. Although this process has been studied in humans and birds, relatively few studies have investigated it in non-human primates.

View Article and Find Full Text PDF

Some paired primates use complex, coordinated vocal signals to communicate within and between family groups. The information encoded within those signals is not well understood, nor is the intricacy of individuals' behavioral and physiological responses to these signals. Considering the conspicuous nature of these vocal signals, it is a priority to better understand paired primates' responses to conspecific calls.

View Article and Find Full Text PDF

In socially monogamous titi monkeys, involuntary separation from a pair mate can produce behavioral distress and increased cortisol production. The neuropeptide oxytocin (OXT) is thought to play an important role in the separation response of pair-bonded species. Previous studies from our lab have shown that chronic intranasal oxytocin (IN OXT) during development can have long-term effects on adult social behavior.

View Article and Find Full Text PDF

Social monogamy is a reproductive strategy characterized by pair living and defense of a common territory. Pair bonding, sometimes displayed by monogamous species, is an affective construct that includes preference for a specific partner, distress upon separation, and the ability of the partner to buffer against stress. Many seahorse species show a monogamous social structure in the wild, but their pair bond has not been well studied.

View Article and Find Full Text PDF

Access to electron acceptors supports oxidized biomass synthesis and can be limiting for cancer cell proliferation, but how cancer cells overcome this limitation in tumors is incompletely understood. Nontransformed cells in tumors can help cancer cells overcome metabolic limitations, particularly in pancreatic cancer, where pancreatic stellate cells (PSCs) promote cancer cell proliferation and tumor growth. However, whether PSCs affect the redox state of cancer cells is not known.

View Article and Find Full Text PDF

Acoustic signals are ubiquitous across mammalian taxa. They serve a myriad of functions related to the formation and maintenance of social bonds and can provide conspecifics information about caller condition, motivation and identity. Disentangling the relative importance of evolutionary mechanisms that shape vocal variation is difficult, and little is known about heritability of mammalian vocalizations.

View Article and Find Full Text PDF

Relationships support social animals' health, but maintaining relationships is challenging. When transitioning to parenthood, new parents balance pair-bond maintenance with infant care. We studied pair-bond maintenance via affiliation in 22 adult titi monkey pairs (Plecturocebus cupreus) for 16 months centered around their first offspring's birth.

View Article and Find Full Text PDF

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours.

View Article and Find Full Text PDF

Steroid hormones are critical to the regulation of sociosexual behavior. Their role in the formation of pair bonds is complicated by the relative scarcity of this social system in mammals, as well as species and taxonomic differences in endocrine systems. In the present study, we experimentally manipulated the hypothalamic-pituitary-adrenal axis in female titi monkeys (Plecturocebus cupreus), a neotropical monkey studied for its strong, selective pair bonds.

View Article and Find Full Text PDF

Pair bonding is a psychological construct that we attempt to operationalize via behavioral and physiological measurements. Yet, pair bonding has been both defined differently in various taxonomic groups as well as used loosely to describe not just a psychological and affective phenomenon, but also a social structure or mating system (either social monogamy or just pair living). In this review, we ask the questions: What has been the historical definition of a pair bond? Has this definition differed across taxonomic groups? What behavioral evidence do we see of pair bonding in these groups? Does this observed evidence alter the definition of pair bonding? Does the observed neurobiology underlying these behaviors affect this definition as well? And finally, what are the upcoming directions in which the study of pair bonding needs to head?

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has a collagen-rich dense extracellular matrix (ECM) that promotes malignancy of cancer cells and presents a barrier for drug delivery. Data analysis of our published mass spectrometry (MS)-based studies on enriched ECM from samples of progressive PDAC stages reveal that the C-terminal prodomains of fibrillar collagens are partially uncleaved in PDAC ECM, suggesting reduced procollagen C-proteinase activity. We further show that the enzyme responsible for procollagen C-proteinase activity, bone morphogenetic protein1 (BMP1), selectively suppresses tumor growth and metastasis in cells expressing high levels of COL1A1.

View Article and Find Full Text PDF

Newborns exposed to prenatal opioids often experience intense postnatal withdrawal after cessation of the opioid, called neonatal opioid withdrawal syndrome (NOWS), with limited pre- and postnatal therapeutic options available. In a prior study in pregnant mice we demonstrated that the peripherally selective opioid antagonist, 6β-naltrexol (6BN), is a promising drug candidate for preventive prenatal treatment of NOWS, and a therapeutic mechanism was proposed based on preferential delivery of 6BN to fetal brain with relative exclusion from maternal brain. Here, we have developed methadone (MTD) treated pregnant guinea pigs as a physiologically more suitable model, enabling detection of robust spontaneous neonatal withdrawal.

View Article and Find Full Text PDF

The Snake Detection Theory implicates constricting snakes in the origin of primates, and venomous snakes for differences between catarrhine and platyrrhine primate visual systems. Although many studies using different methods have found very rapid snake detection in catarrhines, including humans, to date no studies have examined how quickly platyrrhine primates can detect snakes. We therefore tested in captive coppery titi monkeys (Plecturocebus cupreus) the latency to detect a small portion of visible snake skin.

View Article and Find Full Text PDF

Across diverse systems including language, music and genomes, there is a tendency for longer sequences to contain shorter constituents; this phenomenon is known as Menzerath's Law. Whether Menzerath's Law is a universal in biological systems, is the result of compression (wherein shortest possible strings represent the maximum amount of information) or emerges from an inevitable relationship between sequence and constituent length remains a topic of debate. In non-human primates, the vocalizations of geladas, male gibbons and chimpanzees exhibit patterns consistent with Menzerath's Law.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis.

View Article and Find Full Text PDF

The nonhuman primate provides a sophisticated animal model system both to explore neurobiological mechanisms underlying complex behaviors and to facilitate preclinical research for neurodevelopmental and neuropsychiatric disease. A better understanding of evolutionarily conserved behaviors and brain processes between humans and nonhuman primates will be needed to successfully apply recently released NIMH guidelines (NOT-MH-19-053) for conducting rigorous nonhuman primate neurobehavioral research. Here, we explore the relationship between two measures of social behavior that can be used in both humans and nonhuman primates-traditional observations of social interactions with conspecifics and eye gaze detection in response to social stimuli.

View Article and Find Full Text PDF

Tumors are composed of many different cell types including cancer cells, fibroblasts, and immune cells. Dissecting functional metabolic differences between cell types within a mixed population can be challenging due to the rapid turnover of metabolites relative to the time needed to isolate cells. To overcome this challenge, we traced isotope-labeled nutrients into macromolecules that turn over more slowly than metabolites.

View Article and Find Full Text PDF