A number of polyphenolic compounds present in fruits and vegetables have the capacity to modulate immune responses; however, the impact of the common plant-derived flavonoid myricetin on T lymphocyte function has not been investigated. We show that myricetin inhibited mouse T lymphocyte activation by bead-immobilized anti-CD3 and anti-CD28 monoclonal antibodies, as indicated by a dose-dependent reduction in cell proliferation and decreased synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17 associated with different T helper cell subsets. This effect was attributed to myricetin-induced reactive oxygen species (ROS) since myricetin caused hydrogen peroxide (H O ) to accumulate in cell-free culture medium and H O inhibited T cell proliferation and cytokine synthesis.
View Article and Find Full Text PDFMyricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin.
View Article and Find Full Text PDFPiperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth.
View Article and Find Full Text PDF