Publications by authors named "Allison Kehlmann"

Purpose: Early-phase clinical trials (EP-CTs) are designed to determine optimal dosing, tolerability, and preliminary activity of novel cancer therapeutics. Little is known about the time that patients spend interacting with the health care system (eg, time toxicity) while participating in these studies.

Methods: We retrospectively reviewed the electronic health records of consecutive patients enrolled in EP-CTs from 2017 to 2019 to obtain baseline characteristics and number of health care-associated days, defined as all inpatient and outpatient visits while on trial.

View Article and Find Full Text PDF

Unlabelled: PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations.

View Article and Find Full Text PDF

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR).

View Article and Find Full Text PDF

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumor is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach massively reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR).

View Article and Find Full Text PDF

Background: Trastuzumab is a targeted therapy for human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, trastuzumab-induced cardiotoxicity (TIC) has been reported when trastuzumab is administered to patients as a single agent or combined with anthracycline. Currently no means for detecting the early onset of TIC such as a protein biomarker is available.

View Article and Find Full Text PDF