Polyamines, including cadaverine, are organic cations that affect numerous biological processes including transcription, translation, cell signalling, and ion channel activity. They often function in biotic and abiotic stress responses in plants. Because little is known about how plants respond to cadaverine, a quantitative natural variation approach was used to identify genetic factors that contribute to this response.
View Article and Find Full Text PDFAlthough plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process.
View Article and Find Full Text PDFGravitropism is a process that allows plant organs to guide their growth relative to the gravity vector. It requires them to sense changes in their orientation and generate a biochemical signal that they transmit to the tissues that drive organ curvature. Trafficking between the plasma membrane and endosomal compartments is important for all of these phases of the gravitropic response.
View Article and Find Full Text PDFMAP3Kε1 and MAP3Kε2 are a pair of Arabidopsis thaliana genes that encode protein kinases related to cdc7p from Saccharomyces cerevisiae. We have previously shown that the map3kε1;map3kε2 double-mutant combination causes pollen lethality. In this study, we have used an ethanol-inducible promoter construct to rescue this lethal phenotype and create map3kε1(-/-);map3kε2(-/-) double-mutant plants in order to examine the function of these genes in the sporophyte.
View Article and Find Full Text PDFDuring gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle.
View Article and Find Full Text PDFWiley Interdiscip Rev Dev Biol
January 2014
Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward.
View Article and Find Full Text PDF* Arabidopsis cngc2 plants are hypersensitive to external calcium and exhibit reduced plant size and fertility, especially when they are treated with elevated but physiologically relevant levels of calcium. This report focuses on the role of cyclic nucleotide-gated channel 2 (CNGC2) in plant fertility. * To determine the cause of the reduced fertility, we investigated the flower structure and growth potential of both male and female reproductive organs in cngc2 plants grown in high-calcium conditions.
View Article and Find Full Text PDF