Context: X-linked hypophosphatemia (XLH) is an inherited skeletal disorder that can lead to lifelong deleterious musculoskeletal and functional consequences. Although often perceived as a childhood condition, children and adults both experience the negative effects of XLH. Adolescents and young adults (AYAs) benefit from effective health care transition (HCT) preparation to support the transfer from pediatric- to adult-focused care.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs.
View Article and Find Full Text PDFStem Cells Transl Med
September 2016
Unlabelled: : The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential.
View Article and Find Full Text PDFPrior to transplantation, mesenchymal stem/stromal cells (MSCs) can be induced toward the osteoblastic phenotype using a cocktail of soluble supplements. However, there is little evidence of differentiated MSCs directly participating in bone formation, suggesting that MSCs may either die or revert in phenotype upon transplantation. Cell-secreted decellularized extracellular matrices (DMs) are a promising platform to confer bioactivity and direct cell fate through the presentation of a complex and physiologically relevant milieu.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem/stromal cells (MSCs) have demonstrated success in the clinical treatment of hematopoietic pathologies and cardiovascular disease and are the focus of treating other diseases of the musculoskeletal, digestive, integumentary, and nervous systems. However, during the requisite two-dimensional (2D) expansion to achieve a clinically relevant number of cells, MSCs exhibit profound degeneration in progenitor potency. Proliferation, multilineage potential, and colony-forming efficiency are fundamental progenitor properties that are abrogated by extensive monolayer culture.
View Article and Find Full Text PDFAlginate hydrogels containing cell-instructive cues are the subject of intense interest for their use as cell carriers in bone tissue engineering. Peptides and proteins are chemically grafted onto these hydrophilic materials to facilitate adhesion and direct phenotype of entrapped cells. However, the presentation of a single or small number of peptides does not represent the complexity of the native extracellular matrix (ECM) of bony tissues.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear.
View Article and Find Full Text PDF