Publications by authors named "Allison Haigney"

The transcriptional antirepressor AppA is a blue light using flavin (BLUF) photoreceptor that releases the transcriptional repressor PpsR upon photoexcitation. Light activation of AppA involves changes in a hydrogen-bonding network that surrounds the flavin chromophore on the nanosecond time scale, while the dark state of AppA is then recovered in a light-independent reaction with a dramatically longer half-life of 15 min. Residue Y21, a component of the hydrogen-bonding network, is known to be essential for photoactivity.

View Article and Find Full Text PDF

The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP).

View Article and Find Full Text PDF

The Blue Light Using Flavin (BLUF) domain proteins are an important family of photoreceptors controlling a range of responses in a wide variety of organisms. The details of the primary photochemical mechanism, by which light absorption in the isoalloxazine ring of the flavin is converted into a structure change to form the signalling state of the protein, is unresolved. In this work we apply ultrafast time resolved infra-red (TRIR) spectroscopy to investigate the primary photophysics of the BLUF domain of the protein AppA (AppABLUF) a light activated antirepressor.

View Article and Find Full Text PDF

is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from .

View Article and Find Full Text PDF

BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state.

View Article and Find Full Text PDF

Living systems are fundamentally dependent on the ability of proteins to respond to external stimuli. The mechanism, the underlying structural dynamics, and the time scales for regulation of this response are central questions in biochemistry. Here we probe the structural dynamics of the BLUF domain found in several photoactive flavoproteins, which is responsible for light activated functions as diverse as phototaxis and gene regulation.

View Article and Find Full Text PDF

Photochromic proteins, such as Dronpa, are of particular importance in bioimaging and form the basis of ultraresolution fluorescence microscopy. The photochromic reaction involves switching between a weakly emissive neutral trans form of the chromophore (A) and its emissive cis anion (B). Controlling the rates of switching has the potential to significantly enhance the spatial and temporal resolution in microscopy.

View Article and Find Full Text PDF

The blue light using flavin (BLUF) domain proteins, such as the transcriptional antirepressor AppA, are a novel class of photosensors that bind flavin noncovalently in order to sense and respond to high-intensity blue (450 nm) light. Importantly, the noncovalently bound flavin chromophore is unable to undergo large-scale structural change upon light absorption, and thus there is significant interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy.

View Article and Find Full Text PDF

Neutral and anionic flavin radicals are involved in numerous photochemical processes and play an essential part in forming the signaling state of various photoactive flavoproteins such as cryptochromes and BLUF domain proteins. A stable neutral radical flavin has been prepared for study in aqueous solution, and both neutral and anion radical states have been stabilized in the proteins flavodoxin and glucose oxidase. Ultrafast transient absorption measurements were performed in the visible and mid-infrared region in order to characterize the excited state dynamics and the excited and ground state vibrational spectra and to probe the effect of the protein matrix on them.

View Article and Find Full Text PDF

Photoexcitation of the flavin chromophore in the BLUF photosensor AppA results in a conformational change that leads to photosensor activation. This conformational change is mediated by a hydrogen-bonding network that surrounds the flavin, and photoexcitation is known to result in changes in the network that include a strengthening of hydrogen bonding to the flavin C4═O carbonyl group. Q63 is a key residue in the hydrogen-bonding network, and replacement of this residue with a glutamate results in a photoinactive mutant.

View Article and Find Full Text PDF

The light sensing apparatus of many organisms includes a flavoprotein. In any spectroscopic analysis of the photocycle of flavoproteins a detailed knowledge of the spectroscopy and excited state dynamics of potential intermediates is required. Here we correlate transient vibrational and electronic spectra of the two fully reduced forms of flavin adenine dinucleotide (FAD): FADH(-) and FADH(2).

View Article and Find Full Text PDF

The blue light using flavin (BLUF) domain photosensors, such as the transcriptional antirepressor AppA, utilize a noncovalently bound flavin as the chromophore for photoreception. Since the isoalloxazine ring of the chromophore is unable to undergo large-scale structural change upon light absorption, there is intense interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy.

View Article and Find Full Text PDF