Publications by authors named "Allison Goff"

Postpartum depression (PPD) is a leading cause of morbidity and mortality among women. Clinically, the administration and withdrawal of supraphysiologic estradiol and progesterone (E2 + P) can cause affective symptom reoccurrence in women with a history of PPD, but not matched controls. To investigate the cellular basis underlying this differential affective response, lymphoblastoid cell lines (LCLs) were derived from women with and without past PPD and compared transcriptomically in hormone conditions mimicking pregnancy and parturition: supraphysiologic E2 + P-addback; supraphysiologic E2 + P-withdrawal; and no added E2 + P (Baseline).

View Article and Find Full Text PDF

Premenstrual Dysphoric Disorder (PMDD) is characterized by debilitating mood symptoms in the luteal phase of the menstrual cycle. Prior studies of affected women have implicated a differential response to ovarian steroids. However, the molecular basis of these patients' differential response to hormone remains poorly understood.

View Article and Find Full Text PDF

Substantial evidence suggests that circulating ovarian steroids modulate behavior differently in women with PMDD than in those without this condition. However, hormonal state-related abnormalities of neural functioning in PMDD remain to be better characterized. In addition, while altered neural function in PMDD likely co-exists with alterations in intrinsic cellular function, such a relationship has not been explored.

View Article and Find Full Text PDF

Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available.

View Article and Find Full Text PDF