Purpose: Sybil is a validated publicly available deep learning-based algorithm that can accurately predict lung cancer risk from a single low-dose computed tomography (LDCT) scan. We aimed to study the effect of image reconstruction parameters and CT scanner manufacturer on Sybil's performance.
Materials And Methods: Using LDCTs of a subset of the National Lung Screening Trial participants, which we previously used for internal validation of the Sybil algorithm (test set), we ran the Sybil algorithm on LDCT series pairs matched on kilovoltage peak, milliampere-seconds, reconstruction interval, reconstruction diameter, and either reconstruction filter or axial slice thickness.
Johnston's organ is the largest mechanosensory organ in Drosophila; it analyzes movements of the antenna due to sound, wind, gravity, and touch. Different Johnston's organ neurons (JONs) encode distinct stimulus features. Certain JONs respond in a sustained manner to steady displacements, and these JONs subdivide into opponent populations that prefer push or pull displacements.
View Article and Find Full Text PDF