There is no treatment for the progressive neurodegenerative lysosomal storage disorder mucopolysaccharidosis type IIIA (MPS IIIA), which occurs due to a deficiency of functional N-sulfoglucosamine sulfohydrolase (SGSH), with subsequent accumulation of partially-degraded heparan sulfate and secondarily-stored compounds including GM2 and GM3 gangliosides and unesterified cholesterol. The brain is a major site of pathology and affected children exhibit progressive cognitive decline and early death. In the present study, six MPS IIIA dogs received intravenous recombinant human SGSH (rhSGSH) from birth to either 8 or 12 weeks of age (1 mg/kg, up to 5 mg), with subsequent intra-cerebrospinal fluid injection of 3 or 15 mg rhSGSH (or vehicle) on a weekly or fortnightly basis to 23 weeks of age.
View Article and Find Full Text PDFMucopolysaccharidosis type IIIA (MPS IIIA) results from lack of functional sulfamidase (SGSH), a lysosomal enzyme. Its substrate, heparan sulfate, and other secondarily-stored compounds subsequently accumulate primarily within the central nervous system (CNS), resulting in progressive mental deterioration and early death. Presently there is no treatment.
View Article and Find Full Text PDFMucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
August 2007
The lysosomal storage disease alpha-mannosidosis is due to absence or defective function of lysosomal alpha-mannosidase, resulting in primary storage of undegraded mannose-rich oligosaccharides. Disease has been described in humans, cattle, cats, mice, and guinea pigs and is characterized in all species by progressive neurologic deterioration and premature death. We analyzed the neurodegenerative processes relative to clinical disease in alpha-mannosidosis guinea pigs as a human disease model, from birth to end-stage disease.
View Article and Find Full Text PDFalpha-Mannosidosis is a lysosomal storage disorder caused by deficient activity of lysosomal alpha-mannosidase and is characterised by massive accumulation of mannose-containing oligosaccharides in affected individuals. Patients develop behaviour and learning difficulties, skeletal abnormalities, immune deficiency and hearing impairment. Disease in alpha-mannosidosis guinea-pigs resembles the clinical, histopathological, biochemical and molecular features of the human disease.
View Article and Find Full Text PDFThis study evaluates the immunological response following weekly 2h infusions of recombinant human N-acetylgalactosamine 4-sulfatase (rh4S) in Mucopolysaccharidosis VI (MPS VI) cats. The results of three trials (Trial "A": 9 month duration with onset at 3-5 months of age, n = 5; and Trials "B" and "C": 6 month duration starting at birth, n = 9) were compared. No detrimental effects were noted throughout Trials B and C.
View Article and Find Full Text PDF