Publications by authors named "Allioli N"

HER2-dependent signaling may support the development of metastatic castration-resistant prostate cancer (mCRPC) by activating androgen receptor signaling through ligand-independent mechanisms. From 41 mCRPC patients (including 31 treated with Androgen Receptor Signaling Inhibitors [ARSI]), Circulating Tumor Cells (CTCs) were prospectively enriched with AdnaTest platform and analyzed with a multiplexed assay for and mRNA expression. Then, we evaluated the impact of HER2 expression on PSA-response, Progression Free Survival (PFS) and Overall Survival (OS).

View Article and Find Full Text PDF

Background: In metastatic castration-resistant prostate cancer (mCRPC), androgen receptor splice variant 7 (AR-V7) expression is associated with a low response to androgen receptor signaling (ARS) inhibitors such as abiraterone or enzalutamide.

Objective: To perform a highly sensitive assay for detecting AR-V7 (hsAR-V7) in circulating tumor cells (CTCs) and evaluate its ability to predict response to ARS inhibitors.

Design, Setting, And Participants: From 41 mCRPC patients, CTCs were prospectively enriched using AdnaTest platform and analyzed for AR-V7 with and without the highly sensitive assay.

View Article and Find Full Text PDF

miRNAs are master regulators of gene expression that play key roles in cancer metastasis. During bone metastasis, metastatic tumor cells must rewire their biology and express genes that are normally expressed by bone cells (a process called osteomimicry), which endow tumor cells with full competence for outgrowth in the bone marrow. Here, we establish miR-30 family members miR-30a, miR-30b, miR-30c, miR-30d, and miR-30e as suppressors of breast cancer bone metastasis that regulate multiple pathways, including osteomimicry.

View Article and Find Full Text PDF

MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion.

View Article and Find Full Text PDF

Androgen signaling, via the androgen receptor (AR), is crucial in mediating prostate cancer (PCa) initiation and progression. Identifying new downstream effectors of the androgens/AR pathway will allow a better understanding of these mechanisms and could reveal novel biomarkers and/or therapeutic agents to improve the rate of patient survival. We compared the microRNA expression profiles in androgen-sensitive LNCaP cells stimulated or not with 1 nM R1881 by performing a high-throughput reverse transcriptase-quantitative PCR and found that miR-135a was upregulated.

View Article and Find Full Text PDF

Background: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa) among androgen-regulated genes (ARG) and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely) give rise to cancer.

Methods: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR.

View Article and Find Full Text PDF

Background: The Androgen Receptor (AR) plays a key role in controlling prostate gland homeostasis and contributes to prostate carcinogenesis. The identification of its target genes should provide new candidates that may be implicated in cancer initiation and progression.

Methods: Transcriptomic experiments and chromatin immunoprecipitation were combined to identify direct androgen regulated genes.

View Article and Find Full Text PDF

Spermatogenesis is a cyclic process in which diploid spermatogonia differentiate into haploid spermatozoa. This process is highly regulated, notably at the post-transcriptional level. MicroRNAs (miRNAs), single-stranded noncoding RNA molecules of about 20-25 nucleotides, are implicated in the regulation of many important biological pathways such as proliferation, apoptosis, and differentiation.

View Article and Find Full Text PDF

Thyroid hormones act directly on gene transcription in the post-natal developing cerebellum, controlling neuronal, and glial cell differentiation. We have combined three experimental approaches to identify the target genes that are underlying this phenomenon: 1) a microarray analysis of gene expression to identify hormone responsive genes in the cerebellum of Pax8-/- mice, a transgenic mouse model of congenital hypothyroidism; 2) a similar microarray analysis on primary culture of cerebellum neurons; and 3) a bioinformatics screen of conserved putative-binding sites in the mouse genome. This identifies surprisingly a small set of target genes, which, for some of them, might be key regulators of cerebellum development and neuronal differentiation.

View Article and Find Full Text PDF

We have generated transgenic reporter mice to analyze the spatio-temporal distribution of thyroid hormone signaling during mouse brain development. The reporter system, utilizing a chimeric yeast Gal4 DNA-binding domain-thyroid hormone alpha ligand-binding domain fusion protein to drive lacZ expression, revealed that thyroid hormone signaling starts in the midbrain roof several days before the onset of thyroid gland function, and that it remains highly heterogeneous in the central nervous system throughout pre- and postnatal development. We speculate that this heterogeneity might provide neural cells with positional information during development.

View Article and Find Full Text PDF

Thyroid hormones are involved in the regulation of many physiological processes and regulate gene transcription by binding to their nuclear receptors TRalpha and TRbeta. In the absence of triiodothyronine (T3), the unliganded receptors (aporeceptors) do bind DNA and repress the transcription of target genes. The role of thyroid hormone aporeceptors as repressors was observed in hypothyroid adult mice, but its physiological relevance in nonpathological hypothyroid conditions remained to be determined.

View Article and Find Full Text PDF

HEMCAM/gicerin, an immunoglobulin superfamily protein, is involved in homophilic and heterophilic adhesion. It interacts with NOF (neurite outgrowth factor), a molecule of the laminin family. Alternative splicing leads to mRNAs coding for HEMCAM with a short (HEMCAM-s) or a long cytoplasmic tail (HEMCAM-l).

View Article and Find Full Text PDF

An in vivo thymus reconstitution assay based on intrathymic injection of hematopoietic progenitors into irradiated chicks was used to determine the number of T-cell progenitors in peripheral blood, paraaortic foci, bone marrow (BM), and spleen during ontogeny. This study allowed us to analyze the regulation of thymus colonization occurring in three waves during embryogenesis. It confirmed that progenitors of the first wave of thymus colonization originate from the paraaortic foci, whereas progenitors of the second and the third waves originate from the BM.

View Article and Find Full Text PDF

The avian thymus is colonized by three waves of hemopoietic progenitors during embryogenesis. An in vivo thymus reconstitution assay based on intrathymic injection of irradiated chicks showed that cells of para-aortic foci were able to differentiate into T lymphocytes, confirming their putative role in the first wave of thymus colonization. This assay was also used to detect and to characterize T cell progenitors from the bone marrow which are involved in the second and third wave of thymus colonization.

View Article and Find Full Text PDF

Three methods of isolating primordial germ cells (PGCs) from gonads of 5-day-old chick embryos were compared. PGCs were then cultured in vitro in DMEM/F12 medium containing 10% fetal calf serum. BrdU incorporation showed that at least 10% of the PGC population were dividing, under our culture conditions, during the 2nd day of in vitro culture.

View Article and Find Full Text PDF

The variations of the testicular responsiveness to hCG and the implication of the maternal estrogens in the functioning of the testes were studied in the perinatal male rat. Male rat fetuses treated with hCG at the end of gestation failed to show an increase in serum testosterone (T). The lack of testicular responsiveness to hCG in the fetus is neither due to anesthesia nor to a blocking effect of estrogens directly on the testes.

View Article and Find Full Text PDF