Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair.
View Article and Find Full Text PDFAstrocytes are important regulators of neural circuit function and behavior in the healthy and diseased nervous system. We screened for molecules in astrocytes that modulate neuronal hyperexcitability and identified multiple components of focal adhesion complexes (FAs). Depletion of astrocytic Tensin, β-integrin, Talin, focal adhesion kinase (FAK), or matrix metalloproteinase 1 (Mmp1), resulted in enhanced behavioral recovery from genetic or pharmacologically induced seizure.
View Article and Find Full Text PDFAstrocytic uptake of GABA through GABA transporters (GATs) is an important mechanism regulating excitatory/inhibitory balance in the nervous system; however, mechanisms by which astrocytes regulate GAT levels are undefined. We found that at mid-pupal stages the Drosophila melanogaster CNS neuropil was devoid of astrocyte membranes and synapses. Astrocyte membranes subsequently infiltrated the neuropil coordinately with synaptogenesis, and astrocyte ablation reduced synapse numbers by half, indicating that Drosophila astrocytes are pro-synaptogenic.
View Article and Find Full Text PDF