Publications by authors named "Allie C Smith"

Introduction: Biofilm is linked through a variety of mechanisms to the pathogenesis of chronic wounds. However, accurate biofilm detection is challenging, demanding highly specialized and technically complex methods rendering it unapplicable for most clinical settings. This study evaluated promising methods of bedside biofilm localization, fluorescence imaging of wound bacterial loads, and biofilm blotting by comparing their performance against validation scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Chronic wound infections are of clinical concern as they often lead to high rates of mortality and morbidity. A point-of-care handheld bacterial fluorescence imaging has been designed to detect the auto-fluorescent characteristics of most clinically relevant species of bacteria. This device causes most species of bacteria to exhibit red fluorescence due to the production of exoproduct porphyrins.

View Article and Find Full Text PDF

The checkerboard assay is a well-established tool used to determine the antimicrobial effects of two compounds in combination. Usually, data collected from the checkerboard assay use visible turbidity and optical density as a readout. While helpful in traditional checkerboard assays, these measurements become less useful in a polymicrobial context as they do not enable assessment of the drug effects on the individual members of the community.

View Article and Find Full Text PDF

A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics.

View Article and Find Full Text PDF

(PA) is a common bacterial pathogen in chronic wounds known for its propensity to form biofilms and evade conventional treatment methods. Early detection of PA in wounds is critical to the mitigation of more severe wound outcomes. Point-of-care bacterial fluorescence imaging illuminates wounds with safe, violet light, triggering the production of cyan fluorescence from PA.

View Article and Find Full Text PDF

Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 10  colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 10  CFU/biofilm) that were grown in vitro.

View Article and Find Full Text PDF

With the development of next generation sequencing technologies in recent years, it has been demonstrated that many human infectious processes, including chronic wounds, cystic fibrosis, and otitis media, are associated with a polymicrobial burden. Research has also demonstrated that polymicrobial infections tend to be associated with treatment failure and worse patient prognoses. Despite the importance of the polymicrobial nature of many infection states, the current clinical standard for determining antimicrobial susceptibility in the clinical laboratory is exclusively performed on unimicrobial suspensions.

View Article and Find Full Text PDF
Article Synopsis
  • Fluorescence imaging can be used to detect polymicrobial populations in wounds by utilizing porphyrin fluorescence, which allows researchers to visualize the presence of specific pathogens.
  • A study examined 32 bacteria and 4 yeast species for red fluorescence under violet light, finding that 28 bacteria and 1 yeast produced red fluorescence, indicating their ability to produce porphyrins.
  • The results align with clinical observations, suggesting that fluorescence imaging is an effective method for identifying pathogenic bacteria in chronic wounds.
View Article and Find Full Text PDF

Polymicrobial interactions are complex and can influence the course of an infection, as is the case when two or more species exhibit a synergism that produces a disease state not seen with any of the individual species alone. Cell-to-cell signaling is key to many of these interactions, but little is understood about how the host environment influences polymicrobial interactions or signaling between bacteria. Chronic wounds are typically polymicrobial, with and being the two most commonly isolated species.

View Article and Find Full Text PDF