Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C.
View Article and Find Full Text PDFCandida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO), a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies.
View Article and Find Full Text PDFCandida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced by C. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1).
View Article and Find Full Text PDFPseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene.
View Article and Find Full Text PDF