Publications by authors named "Allgeier S"

Background: The in vivo characterisation of corneal epithelial tissue morphology is of considerable importance for diagnosis, disease prognosis, and the development of a treatment strategy for ocular surface diseases. In contrast to many alternative methods, in vivo corneal confocal microscopy (CCM) not only provides a macroscopic description of the corneal tissue but also allows its visualisation with cellular resolution. However, the translation of CCM from research to clinical practice is significantly limited by the complex and still largely manual operation of available CCM systems.

View Article and Find Full Text PDF

The outcome of three-dimensional (3D) bioprinting heavily depends, amongst others, on the interaction between the developed bioink, the printing process, and the printing equipment. However, if this interplay is ensured, bioprinting promises unmatched possibilities in the health care area. To pave the way for comparing newly developed biomaterials, clinical studies, and medical applications (i.

View Article and Find Full Text PDF

A common severe neurotoxic side effect of breast cancer (BC) therapy is chemotherapy-induced peripheral neuropathy (CIPN) and intervention is highly needed for the detection, prevention, and treatment of CIPN at an early stage. As the eye is susceptible to neurotoxic stimuli, the present study aims to determine whether CIPN signs in paclitaxel-treated BC patients correlate with ocular changes by applying advanced non-invasive biophotonic in vivo imaging. Patients (n = 14, 10 controls) underwent monitoring sessions after diagnosis, during, and after therapy (T0-T3).

View Article and Find Full Text PDF

Background: The purpose of the present proof-of-concept study was to use large-area confocal laser scanning microscopy (CLSM) mosaics to determine the migration rates of nerve branching points in the human corneal subbasal nerve plexus (SNP).

Methods: Three healthy individuals were examined roughly weekly over a total period of six weeks by large-area confocal microscopy of the central cornea. An in-house developed prototype system for guided eye movement with an acquisition time of 40 s was used to image and generate large-area mosaics of the SNP.

View Article and Find Full Text PDF

Introduction: The assessment of the corneal nerve fibre plexus with corneal confocal microscopy (CCM) is an upcoming but still experimental method in the diagnosis of early stage diabetic peripheral neuropathy (DPN). Using an innovative imaging technique-Heidelberg Retina Tomograph equipped with the Rostock Cornea Module (HRT-RCM) and EyeGuidance module (EG)-we were able to look at greater areas of subbasal nerve plexus (SNP) in order to increase the diagnostic accuracy. The aim of our study was to evaluate the usefulness of EG instead of single image analysis in diagnosis of early stage DPN.

View Article and Find Full Text PDF

Space weather phenomena can threaten space technologies. A hazard among these is the population of relativistic electrons in the Van Allen radiation belts. To reduce the threat, artificial processes can be introduced by transmitting very-low-frequency (VLF) waves into the belts.

View Article and Find Full Text PDF

Paclitaxel and trastuzumab have been associated with adverse effects including chemotherapy-induced peripheral neuropathy (CIPN) or ocular complications. In vivo confocal laser scanning microscopy (CLSM) of the cornea could be suitable for assessing side effects since the cornea is susceptible to, i.e.

View Article and Find Full Text PDF

The morphometric assessment of the corneal subbasal nerve plexus (SNP) by confocal microscopy holds great potential as a sensitive biomarker for various ocular and systemic conditions and diseases. Automated wide-field montages (or large-area mosaic images) of the SNP provide an opportunity to overcome the limited field of view of the available imaging systems without the need for manual, subjective image selection for morphometric characterization. However, current wide-field montaging solutions usually calculate the mosaic image after the examination session, without a reliable means for the clinician to predict or estimate the resulting mosaic image quality during the examination.

View Article and Find Full Text PDF

In vivo confocal microscopy (IVCM) is a non-invasive imaging technique facilitating real-time acquisition of images from the live cornea and its layers with high resolution (1-2 µm) and high magnification (600 to 800-fold). IVCM is extensively used to examine the cornea at a cellular level, including the subbasal nerve plexus (SBNP). IVCM of the cornea has thus gained intense interest for probing ophthalmic and systemic diseases affecting peripheral nerves.

View Article and Find Full Text PDF

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment.

View Article and Find Full Text PDF

Background: Regarding the growing interest and importance of understanding the cellular changes of the cornea in diseases, a quantitative cellular characterization of the epithelium is becoming increasingly important. Towards this, the latest research offers considerable improvements in imaging of the cornea by confocal laser scanning microscopy (CLSM). This study presents a pipeline to generate normative morphological data of epithelial cell layers of healthy human corneas.

View Article and Find Full Text PDF

In vivo large-area confocal laser scanning microscopy (CLSM) of the human eye using EyeGuidance technology allows a large-scale morphometric assessment of the corneal subbasal nerve plexus (SNP). Here, the SNP of a patient suffering from diabetes and associated late complications was analyzed. The SNP contained multiple clusters of large hyperintense, stellate-shaped, cellular-like structures.

View Article and Find Full Text PDF

Small fiber neuropathy (SFN) has been suggested as a trigger of restless legs syndrome (RLS). An increased prevalence of peripheral neuropathy has been demonstrated in Parkinson's disease (PD). We aimed to investigate, in a cross-sectional manner, whether SFN is overrepresented in PD patients with concurrent RLS relative to PD patients without RLS, using in vivo corneal confocal microscopy (IVCCM) and quantitative sensory testing (QST) as part of small fiber assessment.

View Article and Find Full Text PDF

Introduction: Confocal in vivo microscopy is an established method in ophthalmology research. As it requires contact coupling and calibration of the instruments is suboptimal, this method has been only rarely used in clinical routine work. As a result of close collaboration between physicists, information scientists and ophthalmologists, confocal laser scanning microscopy (CLSM) of the eye has been developed in recent years and a prototype can now be used in patients.

View Article and Find Full Text PDF

Bacillus thuringiensis subsp. israelensis (Bti) has been used in mosquito control programs to reduce nuisance in Europe for decades and is generally considered an environmentally-safe, effective and target-specific biocide. However, the use of Bti is not uncontroversial.

View Article and Find Full Text PDF

The use of deep neural networks ("deep learning") creates new possibilities in digital image processing. This approach has been widely applied and successfully used for the evaluation of image data in ophthalmology. In this article, the methodological approach of deep learning is examined and compared to the classical approach for digital image processing.

View Article and Find Full Text PDF

The Upper Rhine Valley, a "hotspot of biodiversity" in Germany, has been treated with the biocide Bacillus thuringiensis var. israelensis (Bti) for mosquito control for decades. Previous studies discovered Bti nontarget effects in terms of severe chironomid abundance reductions.

View Article and Find Full Text PDF

The biocide Bacillus thuringiensis israelensis (Bti) has become the most commonly used larvicide to control mosquitoes in seasonal wetlands. Although Bti is considered non-toxic to most aquatic organisms, the non-biting chironomids show high susceptibilities towards Bti. As chironomids are a key element in wetland food webs, major declines in their abundance could lead to indirect effects that may be passed through aquatic and terrestrial food chains.

View Article and Find Full Text PDF

The ecological consequences of mosquito control using the larvicide Bacillus thuringiensis israelensis (Bti) are still a matter of debate especially when it comes to adverse effects on non-target but susceptible non-biting midges (Chironomidae). Our work aimed to assess the effects of Bti applied in operational mosquito control rates on chironomid abundances in seasonal flooded freshwater wetlands. We assessed the invertebrate community alongside with aquatic insect emergence rates in studies with increasing ecotoxicological complexity, ranging from artificial mesocosms, over a semi-field approach using enclosures to natural conditions in field studies.

View Article and Find Full Text PDF

Introduction: Diabetic neuroosteoarthropathy (DNOAP) early symptoms are unspecific, mimicking general infectious symptoms and rendering a diagnosis challenging. Consequently, unfavourable outcomes occur frequently, with recurrent foot ulceration, infectious complications, and eventually amputation. Corneal confocal microscopy (CCM) of the subbasal nerve plexus (SNP) is used to detect early peripheral neuropathy in diabetic patients without diabetic retinopathy.

View Article and Find Full Text PDF

We present an confocal laser scanning microscopy based method for large 3D reconstruction of the cornea on a cellular level with cropped volume sizes up to 266 x 286 x 396 µm. The microscope objective used is equipped with a piezo actuator for automated, fast and precise closed-loop focal plane control. Furthermore, we present a novel concave surface contact cap, which significantly reduces eye movements by up to 87%, hence increasing the overlapping image area of the whole stack.

View Article and Find Full Text PDF

The capability of corneal confocal microscopy (CCM) to acquire high-resolution in vivo images of the densely innervated human cornea has gained considerable interest in using this non-invasive technique as an objective diagnostic tool for staging peripheral neuropathies. Morphological alterations of the corneal subbasal nerve plexus (SNP) assessed by CCM have been shown to correlate well with the progression of neuropathic diseases and even predict future-incident neuropathy. Since the field of view of single CCM images is insufficient for reliable characterisation of nerve morphology, several image mosaicking techniques have been developed to facilitate the assessment of the SNP in large-area visualisations.

View Article and Find Full Text PDF

A dense nerve plexus in the clear outer window of the eye, the cornea, can be imaged in vivo to enable non-invasive monitoring of peripheral nerve degeneration in diabetes. However, a limited field of view of corneal nerves, operator-dependent image quality, and subjective image sampling methods have led to difficulty in establishing robust diagnostic measures relating to the progression of diabetes and its complications. Here, we use machine-based algorithms to provide wide-area mosaics of the cornea's subbasal nerve plexus (SBP) also accounting for depth (axial) fluctuation of the plexus.

View Article and Find Full Text PDF

Bacillus thuringiensis var. israelensis (Bti) is presumed to be an environmental friendly agent for the use in either health-related mosquito control or the reduction of nuisance associated with mosquitoes from seasonal wetlands. Amphibians inhabiting these valuable wetlands may be exposed to Bti products several times during their breeding season.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) of the retina and corneal confocal laser scanning microscopy (CLSM) of the subbasal nerve plexus (SBP) are noninvasive techniques for quantification of the ocular neurodegenerative changes in individuals with type 1 diabetes mellitus (T1DM). In adult T1DM patients these changes are hardly related to T1DM only. Instead, ageing and/or lifestyle associated comorbidities have to be considered as putative confounding variables.

View Article and Find Full Text PDF