The partially dominant, autoactive maize disease resistance gene Rp1-D21 causes hypersensitive response (HR) lesions to form spontaneously on leaves and stems in the absence of pathogen recognition. The maize nested association mapping (NAM) population consists of 25 200-line subpopulations each derived from a cross between the maize line B73 and one of 25 diverse inbred lines. By crossing a line carrying the Rp1-D21 gene with lines from three of these subpopulations and assessing the F(1) progeny, we were able to map several novel loci that modify the maize HR, using both single-population quantitative trait locus (QTL) and joint analysis of all three populations.
View Article and Find Full Text PDFAntisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically.
View Article and Find Full Text PDFExon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-skipping effect by specific antisense oligomers.
View Article and Find Full Text PDFMutations in the fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) as well as other severe muscle disorders, including Walker-Warburg syndrome, muscle-eye-brain disease, and congenital muscular dystrophy type 1C. The FKRP gene encodes a putative glycosyltransferase, but its precise localization and functions have yet to be determined. In the present study, we demonstrated that normal FKRP is secreted into culture medium and mutations alter the pattern of secretion in CHO cells.
View Article and Find Full Text PDFMutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo.
View Article and Find Full Text PDF