Publications by authors named "Allen Wensky"

The use of xenogeneic porcine pancreatic islets has been shown to be a potentially promising alternative to using human allogeneic islets to treat insulin-dependent type 1 diabetes (T1D). This article provides an overview of the existing FDA regulatory framework that would be applied to the regulation of clinical trials utilizing xenogeneic porcine pancreatic islets to treat T1D.

View Article and Find Full Text PDF

The selective targeting of the tumor-associated death-inducing receptors DR4 and DR5 with agonistic mAbs has demonstrated preclinical and clinical antitumor activity. However, the cellular and molecular mechanisms contributing to this efficacy remain poorly understood. In this study, using the first described C57BL/6 (B6) TRAIL-sensitive experimental tumor models, we have characterized the innate and adaptive immune components involved in the primary rejection phase of an anti-mouse DR5 (mDR5) mAb, MD5-1 in established MC38 colon adenocarcinomas.

View Article and Find Full Text PDF

Strong evidence supports that CNS-specific CD4(+) T cells are central to the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Using a model of spontaneous EAE, we demonstrated that myelin basic protein (MBP)-specific CD4(+) T cells up-regulate activation markers in the CNS-draining cervical lymph nodes at a time when there is no T cell activation anywhere else, including the CNS, and before the appearance of clinical signs. In spontaneous EAE, the number of MBP-specific T cell numbers does not build up gradually in the CNS; instead, a swift migration of IFN-gamma-producing T cells into the CNS takes place approximately 24 h before the onset of neurological signs of EAE.

View Article and Find Full Text PDF

Injuries to the central nervous system (CNS) trigger an inflammatory reaction with potentially devastating consequences. In this report we compared the characteristics of the inflammatory response on spinal cord injury (SCI) caused by a stab wound between the T7 and T9 vertebrae and spontaneous experimental autoimmune encephalomyelitis (EAE). SCI and EAE were compared in two types of myelin basic protein Ac1-11-specific T-cell receptor transgenic mice: T/R+ mice harbor regulatory T cells, and T/R- mice lack regulatory T cells.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the CNS initiated by autoreactive CD4(+) T cells. EAE classically presents with a progressive ascending paralysis and is a model of multiple sclerosis that recapitulates some aspects of the disease. In this report we describe a mouse strain that spontaneously develops a severe, nonclassical form of EAE with 100% incidence.

View Article and Find Full Text PDF