The ways in which human cytomegalovirus (HCMV) major immediate-early (MIE) gene expression breaks silence from latency to initiate the viral replicative cycle are poorly understood. A delineation of the signaling cascades that desilence the HCMV MIE genes during viral quiescence in the human pluripotent N-Tera2 (NT2) cell model provides insight into the molecular mechanisms underlying HCMV reactivation. In this model, we show that phorbol 12-myristate 13-acetate (PMA) immediately activates the expression of HCMV MIE RNA and protein and greatly increases the MIE-positive (MIE(+)) NT2 cell population density; levels of Oct4 (pluripotent cell marker) and HCMV genome penetration are unchanged.
View Article and Find Full Text PDFThe triggering mechanisms underlying reactivation of human cytomegalovirus (HCMV) in latently infected persons are unclear. During latency, HCMV major immediate-early (MIE) gene expression breaks silence to initiate viral reactivation. Using quiescently HCMV-infected human pluripotent embryonal NTera2 cells (NT2) to model HCMV reactivation, we show that vasoactive intestinal peptide (VIP), an immunomodulatory neuropeptide, immediately and dose-dependently (1 to 500 nM) activates HCMV MIE gene expression.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) major immediate-early (MIE) enhancer contains five functional cyclic AMP (cAMP) response elements (CRE). Because the CRE in their native context do not contribute appreciably to MIE enhancer/promoter activity in lytically infected human fibroblasts and NTera2 (NT2)-derived neurons, we postulated that they might have a role in MIE enhancer/promoter reactivation in quiescently infected cells. Here, we show that stimulation of the cAMP signaling pathway by treatment with forskolin (FSK), an adenylyl cyclase activator, greatly alleviates MIE enhancer/promoter silencing in quiescently infected NT2 neuronal precursors.
View Article and Find Full Text PDF