Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology education. Over the past years, we have been working to help biology instructors introduce bioinformatics activities into their curricula by providing them with instructional materials that use bioinformatics programs and databases as educational tools.
View Article and Find Full Text PDFWe analyzed how cells from tumors caused by mutations in either lgl or brat use matrix metalloproteinases (MMPs) to facilitate metastasis in Drosophila. MMP1 accumulation is dramatically increased in lgl larval imaginal discs compared to both wild type and brat mutants. Removal of Mmp1 gene activity in lgl brain tumor cells reduced their frequency of ovarian micro-metastases after transplantation; whereas, removal of Mmp1 gene activity in brat tumor cells had no such effect.
View Article and Find Full Text PDFLoss of either lgl or brat gene activity in Drosophila larvae causes neoplastic brain tumors. Fragments of tumorous brains from either mutant transplanted into adult hosts over-proliferate, and kill their hosts within 2 weeks. We developed an in vivo assay for the metastatic potential of tumor cells by quantifying micrometastasis formation within the ovarioles of adult hosts after transplantation and determined that specific metastatic properties of lgl and brat tumor cells are different.
View Article and Find Full Text PDFJ Bioenerg Biomembr
August 2006
The prune-Killer of prune conditional dominant, lethal interaction in Drosophila was identified in the 1950s, but its mechanism remains unknown. We undertook a genetic screen for suppressors of this lethal interaction and identified a gene we named, Suppressor of Killer of prune Su(Kpn). Su(Kpn) is a unique protein with four N-terminal FLYWCH zinc-finger domains, an acidic domain and a C-terminal glutathione S-transferase (GST) domain.
View Article and Find Full Text PDFThe prune gene of Drosophila melanogaster is predicted to encode a phosphodiesterase. Null alleles of prune are viable but cause an eye-color phenotype. The abnormal wing discs gene encodes a nucleoside diphosphate kinase.
View Article and Find Full Text PDFThe products of trithorax group (trxG) genes maintain active transcription of many important developmental regulatory genes, including homeotic genes. Several trxG proteins have been shown to act in multimeric protein complexes that modify chromatin structure. ASH2, the product of the Drosophila trxG gene absent, small, or homeotic discs 2 (ash2) is a component of a 500-kD complex.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2003
Covalent modifications of histone tails modulate gene expression via chromatin organization. As examples, methylation of lysine 9 residues of histone H3 (H3) (H3-K9) is believed to repress transcription by compacting chromatin, whereas methylation of lysine 4 residues of H3 (H3-K4) is believed to activate transcription by relaxing chromatin. The Drosophila trithorax group protein absent, small, or homeotic discs 1 (ASH1) is involved in maintaining active transcription of many genes.
View Article and Find Full Text PDFPhotoreceptor differentiation in the Drosophila eye disc progresses from posterior to anterior in a wave driven by the Hedgehog and Decapentaplegic signals. Cells mutant for the hyperplastic discs gene misexpress both of these signaling molecules in anterior regions of the disc, leading to premature photoreceptor differentiation and overgrowth of surrounding tissue. The two genes are independently regulated by hyperplastic discs; decapentaplegic can still be misexpressed in cells mutant for both hyperplastic discs and hedgehog, and a repressor form of the transcription factor Cubitus interruptus can block decapentaplegic misexpression but not hedgehog misexpression.
View Article and Find Full Text PDFThe ash-1 locus is in the proximal region of the left arm of the third chromosome of Drosophila melanogaster and the ash-2 locus is in the distal region of the right arm of the third chromosome. Mutations at either locus can cause homeotic transformations of the antenna to leg, proboscis to leg and/or antenna, dorsal prothorax to wing, first and third leg to second leg, haltere to wing, and genitalia to leg and/or antenna. Mutations at the ash-1 locus cause, in addition, transformations of the posterior wing and second leg to anterior wing and second leg, respectively.
View Article and Find Full Text PDF