Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death.
View Article and Find Full Text PDFBackground Context: Isthmic spondylolisthesis (IS) is defined as the anterior translation of one lumbar vertebra relative to the next caudal segment as a result of a unilateral or bilateral fracture of the pars interarticularis. These fractures are interchangeably known as "pars defects" or "spondylolysis." Many risk factors have been proposed to explain the progression of a spondylolytic defect to IS, however, none are validated.
View Article and Find Full Text PDFIt was recently shown that bacteria use, apart from CRISPR-Cas and restriction systems, a considerable diversity of phage resistance systems, but it is largely unknown how phages cope with this multilayered bacterial immunity. Here we analysed groups of closely related Bacillus phages that showed differential sensitivity to bacterial defence systems, and discovered four distinct families of anti-defence proteins that inhibit the Gabija, Thoeris and Hachiman systems. We show that these proteins Gad1, Gad2, Tad2 and Had1 efficiently cancel the defensive activity when co-expressed with the respective defence system or introduced into phage genomes.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2023
We present a detailed analysis of regional myocardial blood flow and work to better understand the effects of coronary stenoses and low-dose dobutamine stress. Our analysis is based on a unique open-chest model in anesthetized canines that features invasive hemodynamic monitoring, microsphere-based blood flow analysis, and an extensive three-dimensional (3-D) sonomicrometer array that provides multiaxial deformational assessments in the ischemic, border, and remote vascular territories. We use this model to construct regional pressure-strain loops for each territory and quantify the loop subcomponent areas that reflect myocardial work contributing to the ejection of blood and wasted work that does not.
View Article and Find Full Text PDFThe Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function.
View Article and Find Full Text PDFThe cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation. Phages use several strategies to defeat host CRISPR and restriction-modification systems, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2021
Reliable motion estimation and strain analysis using 3D+ time echocardiography (4DE) for localization and characterization of myocardial injury is valuable for early detection and targeted interventions. However, motion estimation is difficult due to the low-SNR that stems from the inherent image properties of 4DE, and intelligent regularization is critical for producing reliable motion estimates. In this work, we incorporated the notion of domain adaptation into a supervised neural network regularization framework.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
April 2020
Accurate interpretation and analysis of echocardiography is important in assessing cardiovascular health. However, motion tracking often relies on accurate segmentation of the myocardium, which can be difficult to obtain due to inherent ultrasound properties. In order to address this limitation, we propose a semi-supervised joint learning network that exploits overlapping features in motion tracking and segmentation.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2020
Accurate motion tracking of the left ventricle is critical in detecting wall motion abnormalities in the heart after an injury such as a myocardial infarction. We propose an unsupervised motion tracking framework with physiological constraints to learn dense displacement fields between sequential pairs of 2-D B-mode echocardiography images. Current deep-learning motion-tracking algorithms require large amounts of data to provide ground-truth, which is difficult to obtain for datasets (such as patient data and animal studies), or are unsuccessful in tracking motion between echocardiographic images due to inherent ultrasound properties (such as low signal-to-noise ratio and various image artifacts).
View Article and Find Full Text PDFBackground: Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships.
View Article and Find Full Text PDFProkaryotic mechanosensitive (MS) channels open by sensing the physical state of the membrane. As such, lipid-protein interactions represent the defining molecular process underlying mechanotransduction. Here, we describe cryo-electron microscopy (cryo-EM) structures of the small-conductance mechanosensitive channel (MscS) in nanodiscs (ND).
View Article and Find Full Text PDFThe accurate quantification of left ventricular (LV) deformation/strain shows significant promise for quantitatively assessing cardiac function for use in diagnosis and therapy planning. However, accurate estimation of the displacement of myocardial tissue and hence LV strain has been challenging due to a variety of issues, including those related to deriving tracking tokens from images and following tissue locations over the entire cardiac cycle. In this work, we propose a point matching scheme where correspondences are modeled as flow through a graphical network.
View Article and Find Full Text PDFSpeckle tracking based on block matching is the most common method for multi-dimensional motion estimation in ultrasound elasticity imaging. Extension of two-dimensional (2-D) methods to three dimensions (3-D) has been problematic because of the large computational load of 3-D tracking, as well as performance issues related to the low frame (volume) rates of 3-D images. To address both of these problems, we have developed an efficient two-pass tracking method suited to cardiac elasticity imaging.
View Article and Find Full Text PDFStatistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes.
View Article and Find Full Text PDFDespite the fact that X-box binding protein-1 (XBP-1) is one of the main regulators of the unfolded protein response (UPR), the modulators of XBP-1 are poorly understood. Here, we show that the regulatory subunits of phosphotidyl inositol 3-kinase (PI3K), p85alpha (encoded by Pik3r1) and p85beta (encoded by Pik3r2) form heterodimers that are disrupted by insulin treatment. This disruption of heterodimerization allows the resulting monomers of p85 to interact with, and increase the nuclear translocation of, the spliced form of XBP-1 (XBP-1s).
View Article and Find Full Text PDFLeptin has not evolved as a therapeutic modality for the treatment of obesity due to the prevalence of leptin resistance in a majority of the obese population. Nevertheless, the molecular mechanisms of leptin resistance remain poorly understood. Here, we show that increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) in the hypothalamus of obese mice inhibits leptin receptor signaling.
View Article and Find Full Text PDFEarlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval.
View Article and Find Full Text PDFMaps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use themto motivate a new numerical method to construct unbiased nonlinear image registration.
View Article and Find Full Text PDFExpansion of the cerebral ventricles may occur at an accelerated rate in subjects with dementia, but the time course of expansion during transitions between normal cognitive function, mild cognitive impairment (MCI), and dementia is not well understood. Furthermore, the effects of cardiovascular risk factors on rate of ventricular expansion are unclear. We used a fully automated segmentation technique to measure change rate in lateral ventricle-to-brain ratio (VBR) on 145 longitudinal pairs of magnetic resonance images of subjects in the Cardiovascular Health Study Cognition Study from the Pittsburgh Center.
View Article and Find Full Text PDFFragile X syndrome (FraX), a genetic neurodevelopmental disorder, results in impaired cognition with particular deficits in executive function and visuo-spatial skills. Here we report the first detailed 3D maps of the effects of the Fragile X mutation on brain structure, using tensor-based morphometry. TBM visualizes structural brain deficits automatically, without time-consuming specification of regions-of-interest.
View Article and Find Full Text PDFElevated cerebral ventricular volume may be associated with dementia risk and progression. A fully-automated technique that agreed highly with radiological readings was used to estimate lateral ventricle volume on MR scans done at baseline in 1997-99 of 377 subjects in the Cardiovascular Health Study (CHS) from the Pittsburgh Center. 327 subjects were normal or diagnosed with mild cognitive impairment (MCI) at baseline and were evaluated 4 years later.
View Article and Find Full Text PDFObjective: 40 million people worldwide are now infected with HIV/AIDS, an illness that often leads to rapidly progressing dementia and death. Even so, little is known about how AIDS affects the brain. Using computational anatomy techniques, we mapped how AIDS impacts the corpus callosum (CC) and ventricular system, two systems that show prominent changes on MRI.
View Article and Find Full Text PDFTreatment options for chondral and osteochondral defects of the patella have been few and results have been inconsistent at best. Autologous osteochondral transplantation presents a new way to revisit these patellar defects. We report the case of a young female softball player with a simple cyst in the patella and an osteochondral defect that serves as the indication for autograft osteochondral transplantation.
View Article and Find Full Text PDFArthrodesis of the ankle or subtalar joint for limb salvage in joint sepsis is extremely complicated, and produces a protracted course of management. A successful outcome is founded on the diligence of the surgeon in the preoperative evaluation, intraoperative technique, and postoperative care of the patient. Liberal consultation with infectious disease specialists, vascular, and plastic surgeons is recommended.
View Article and Find Full Text PDF