Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity.
View Article and Find Full Text PDFThe first example of a kinetic labeling library designed to enable the discovery of affinity labels is presented. Each library component (1) consists of a variable peptidyl component linked to a biotinyl moiety by a 4-mercaptobenzoyl linker in thioester format. We demonstrate that an affinity label can be uncovered by measuring reaction rates between library pools and the protein target, human serum albumin (HSA) and identifying significant outliers.
View Article and Find Full Text PDFAnnexin V (1) specifically binds to phosphatidylserine on apoptotic and necrotic cells as well as certain cancer cells, making it an attractive vehicle for the delivery of therapeutically-relevant conjugates to such sites. The wild-type protein possesses a single thiol at Cys316, which is difficultly accessible to site-specific labeling by simple maleimides. By contrast, 1,4-benzoquinone site-specifically labels annexin V in minutes.
View Article and Find Full Text PDF