Visceral pain is a prominent feature of various gastrointestinal diseases. The P2X7 receptor is expressed by multiple cell types including dorsal root ganglion satellite glial cells, macrophages, and spinal microglia, all of which have been implicated in nociceptive sensitization. We have used the selective and CNS penetrant P2X7 receptor antagonist Lu AF27139 to explore this receptor's role in distinct rat models of inflammatory and visceral hypersensitivity.
View Article and Find Full Text PDFBackground: P2X7 receptor antagonists have potential for treating various central nervous system (CNS) diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signalling in pain, and the lack of a corresponding preclinical mechanistic biomarker.
Methods: Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties.
There remains an insufficient number of P2X7 receptor antagonists with adequate rodent potency, CNS permeability, and pharmacokinetic properties from which to evaluate CNS disease hypotheses preclinically. Herein, we describe the molecular pharmacology, safety, pharmacokinetics, and functional CNS target engagement of Lu AF27139, a novel rodent-active and CNS-penetrant P2X7 receptor antagonist. Lu AF27139 is highly selective and potent against rat, mouse, and human forms of the receptors.
View Article and Find Full Text PDFThe manipulation of cholesterol and its metabolites has been hypothesized to be therapeutically beneficial for mood disorders, neurodegenerative disorders, and epilepsies. A major regulator of cholesterol clearance and turnover in the central nervous system is CYP46A1, a brain enriched enzyme responsible for metabolism of cholesterol into 24S-hydroxycholesterol. Inhibition of this enzyme may negatively modulate NMDARs as 24S-hydroxycholesterol was shown to enhance NMDAR function.
View Article and Find Full Text PDFCalcium dependent protein kinase 1 (CDPK1) is an essential Ser/Thr kinase that controls invasion and egress by the protozoan parasite . The Gly gatekeeper of CDPK1 makes it exquisitely sensitive to inhibition by small molecule 1-pyrazolo[3,4-]pyrimidine-4-amine (PP) compounds that are bulky ATP mimetics. Here we rationally designed, synthesized, and tested a series of novel PP analogs that were evaluated for inhibition of CDPK1 enzyme activity and parasite growth in cell culture.
View Article and Find Full Text PDFMedicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation.
View Article and Find Full Text PDFA safer treatment for toxoplasmosis would be achieved by improving the selectivity and potency of dihydrofolate reductase (DHFR) inhibitors, such as pyrimethamine (1), for Toxoplasma gondii DHFR ( TgDHFR) relative to human DHFR ( hDHFR). We previously reported on the identification of meta-biphenyl analog 2, designed by in silico modeling of key differences in the binding pocket between TgDHFR and hDHFR. Compound 2 improves TgDHFR selectivity 6.
View Article and Find Full Text PDFA new series of potent fused thiazole mGlu5 receptor positive allosteric modulators (PAMs) (10, 11 and 27-31) are disclosed and details of the SAR and optimization are described. Optimization of alkynyl thiazole 9 (Lu AF11205) led to the identification of potent fused thiazole analogs 10b, 27a, 28j and 31d. In general, substituted cycloalkyl, aryl and heteroaryl carboxamides, and carbamate analogs are mGlu5PAMs, whereas smaller alkyl carboxamide, sulfonamide and sulfamide analogs tend to be mGlu5 negative allosteric modulators (NAMs).
View Article and Find Full Text PDFRationale: Phosphodiesterase-4 (PDE4) has two conformation states based on rolipram binding, the high-affinity rolipram binding state (HARBS) and the low-affinity rolipram binding state (LARBS); their functions remain to be fully explained.
Objective: Experiments were carried out to determine the roles of the HARBS and LARBS in the mediation of antidepressant-like effects on behavior.
Materials And Methods: Two animal models sensitive to antidepressant drugs, the forced-swim test (FST), and the differential-reinforcement-of-low-rate (DRL) 72-s operant schedule, were used to examine the antidepressant-like effects of rolipram, CDP840, and piclamilast, PDE4 inhibitors that interact differentially with the HARBS and LARBS, and MEM1018 and MEM1091, two novel PDE4 inhibitors.
An effective treatment for age-related cognitive deficits remains an unmet medical need. Currently available drugs for the symptomatic treatment of Alzheimer's disease or other dementias have limited efficacy. This may be due to their action at only one of the many neurotransmitter systems involved in the complex mechanisms that underlie cognition.
View Article and Find Full Text PDFRationale: Inhibition of cyclic AMP (cAMP)-specific phosphodiesterase (PDE4) enhances memory in rodents. MEM1018 and MEM1091 are newly developed PDE4 inhibitors that had not been evaluated as yet for their effects on working and reference memory.
Objective: Experiments were carried out to determine whether these two drugs alter memory and if these effects are associated with changes in intracellular cAMP in the brain.