J Investig Dermatol Symp Proc
September 2006
Among many molecules known to influence wound healing, transforming growth factor beta 1 (TGF beta 1) has the broadest spectrum of actions, affecting all cell types that are involved in all stages of wound healing. Both positive and negative effects of TGF beta 1 on wound healing have been reported. However, the underlying mechanisms are largely unknown.
View Article and Find Full Text PDFThe functions of transforming growth factor beta-1(TGFbeta1) are cell-context specific. We have found that TGFbeta1 expression in human skin squamous cell carcinoma (SCC) samples has two distinct distribution patterns: (1) either predominantly in suprabasal layers or (2) throughout tumor epithelia including basal proliferative cells. To understand whether the spatial TGFbeta1 expression patterns affect its functions, we have generated several keratinocyte-specific transgenic mouse models in which TGFbeta1 overexpression can be induced either predominantly in the suprabasal epidermis or in the basal layer of the epidermis and hair follicles.
View Article and Find Full Text PDFJ Investig Dermatol Symp Proc
November 2005
Previously, we have shown that transforming growth factor beta 1 (TGFbeta1) overexpression in suprabasal epidermis suppresses skin carcinogenesis at early stages, but promotes tumor invasion at later stages. To elucidate the role of TGFbeta1 overexpression in naturally occurring human squamous cell carcinomas (SCC), we screened TGFbeta1 expression patterns in human skin SCC samples and found that TGFbeta1 was overexpressed with two distinct patterns: either predominantly in suprabasal layers or throughout tumor epithelia including basal proliferative cells. To determine the effect of TGFbeta1 overexpression in basal keratinocytes, we generated transgenic mice expressing wild-type TGFbeta1 in basal keratinocytes and hair follicles using the K5 promoter (K5.
View Article and Find Full Text PDF