The Arabidopsis L-type Amino Acid Transporter-5 (LAT5; At3g19553) was recently studied for its role in developmental responses such as flowering and senescence, under an assumption that it is a polyamine uptake transporter (PUT5). The LATs in Arabidopsis have a wide range of substrates, including amino acids and polyamines. This report extensively studied the organ and tissue-specific expression of the LAT5/PUT5 and investigated its role in mediating amino acid transport.
View Article and Find Full Text PDFOver the past half century, the use of nitrogen (N) fertilizers has markedly increased crop yields, but with considerable negative effects on the environment and human health. Consequently, there has been a strong push to reduce the amount of N fertilizer used by maximizing the nitrogen use efficiency (NUE) of crops. One approach would be to use classical genetics to improve the NUE of a crop plant.
View Article and Find Full Text PDFA comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes.
View Article and Find Full Text PDFFront Plant Sci
December 2015
Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management.
View Article and Find Full Text PDFIn the past 50 years, the application of synthetic nitrogen (N) fertilizer to farmland resulted in a dramatic increase in crop yields but with considerable negative impacts on the environment. New solutions are therefore needed to simultaneously increase yields while maintaining, or preferably decreasing, applied N to maximize the nitrogen use efficiency (NUE) of crops. In this review, we outline the definition of NUE, the selection and development of NUE crops, and the factors that interact with NUE.
View Article and Find Full Text PDFIt has been 30 years since the first transformation of a gene into a plant species, and since that time a number of biotechnology products have been developed, with the most important being insect- and herbicide-resistant crops. The development of second-generation products, including nutrient use efficiency and tolerance to important environmental stressors such as drought, has, up to this time, been less successful. This is in part due to the inherent complexities of these traits and in part due to limitations in research infrastructure necessary for public sector researchers to test their best ideas.
View Article and Find Full Text PDFGibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE).
View Article and Find Full Text PDFNitrogen is the key limiting nutrient required for plant growth. The application of nitrogen-based fertilizers to crops has risen dramatically in recent years, resulting in significant yield increases. However, increased production has come at the cost of substantial negative environmental consequences.
View Article and Find Full Text PDFAlanine aminotransferase (AlaAT) has been studied in a variety of organisms due to the involvement of this enzyme in mammalian processes such as non-alcoholic hepatocellular damage, and in plant processes such as C4 photosynthesis, post-hypoxic stress response and nitrogen use efficiency. To date, very few studies have made direct comparisons of AlaAT enzymes and fewer still have made direct comparisons of this enzyme across a broad spectrum of organisms. In this study we present a direct kinetic comparison of glutamate:pyruvate aminotransferase (GPAT) activity for seven AlaATs and two glutamate:glyoxylate aminotransferases (GGAT), measuring the K(M) values for the enzymes analyzed.
View Article and Find Full Text PDFTemperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming.
View Article and Find Full Text PDFPlant Biotechnol J
December 2012
In the last 40 years the amount of synthetic nitrogen (N) applied to crops has risen drastically, resulting in significant increases in yield but with considerable impacts on the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a 'Second Green Revolution' and research in the field of nitrogen use efficiency (NUE) has continued to grow. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, C/N storage and metabolism, signalling and regulation of N metabolism and translocation, remobilization and senescence.
View Article and Find Full Text PDFGlobally, we are applying excessive nitrogen (N) fertilizers to our agricultural crops, which ultimately causes nitrogen pollution to our ecosphere. The atmosphere is polluted by N₂O and NO(x) gases that directly and indirectly increase atmospheric warming and climate change. Nitrogen is also leached from agricultural lands as the water-soluble form NO₃⁻, which increases nutrient overload in rivers, lakes, and oceans, causing "dead zones", reducing property values and the diversity of aquatic life, and damaging our drinking water and aquatic-associated industries such as fishing and tourism.
View Article and Find Full Text PDFBackground: Safflower, Carthamus tinctorius, is a thistle that is grown commercially for the production of oil and birdseed and recently, as a host for the production of transgenic pharmaceutical proteins. C. tinctorius can cross with a number of its wild relatives, creating the possibility of gene flow from safflower to weedy species.
View Article and Find Full Text PDFA critical step in the development of a robust Agrobacterium tumefaciens-mediated transformation -system for cereal crop plants is the establishment of optimal conditions for efficient T-DNA delivery into target tissue, from which plants can be regenerated. Although, Agrobacterium-mediated transformation of cereals is an important method that has been widely used by many laboratories around the world, routine protocols have been established only in specific cultivars within a species and with specific tissues of high regeneration potential. Cocultivation of highly embryogenic callus tissue or healthy immature embryos with A.
View Article and Find Full Text PDFBrassica carinata, an allotetraploid with B and C genomes, has a number of traits that would be valuable to introgress into B. napus. Interspecific hybrids were created between B.
View Article and Find Full Text PDFThe interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice.
View Article and Find Full Text PDFA set of SSR and RFLP markers for safflower (Carthamus tinctorius) and jeweled distaff thistle (C. oxyacanthus) was generated from cDNA and genomic libraries and by mining public and proprietary sequence databases. In total, 1412 PCR-based markers and 75 RFLP markers were screened and polymorphic loci were mapped in an intraspecific F2 population of C.
View Article and Find Full Text PDFBackground And Aims: Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE.
Methods: Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions.
Plant Signal Behav
October 2008
Glutamate is of central importance in plant N metabolism since the biosynthesis of all other amino acids requires this compound. Glutamate dehydrogenase (GDH; EC 1.4.
View Article and Find Full Text PDFCrop plants require nitrogen for key macromolecules, such as DNA, proteins and metabolites, yet they are generally inefficient at acquiring nitrogen from the soil. Crop producers compensate for this low nitrogen utilization efficiency by applying nitrogen fertilizers. However, much of this nitrogen is unavailable to the plants as a result of microbial uptake and environmental loss of nitrogen, causing air, water and soil pollution.
View Article and Find Full Text PDFField experiments were conducted in Chile and western Canada to measure short-distance (0 to 100 m) outcrossing from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming to non-transgenic commodity safflower of the same variety. The transgenic safflower used as the pollen source was transformed with a construct for seed-specific expression of a high-value protein and constitutive expression of a gene conferring resistance to the broad-spectrum herbicide glufosinate.
View Article and Find Full Text PDFMetabolic flux to triacylglycerol (TAG) may be limited by the level of acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.
View Article and Find Full Text PDF