Publications by authors named "Allen G Rodrigo"

Article Synopsis
  • UMAP has transformed single-cell RNA analysis, but its application to single-cell DNA sequencing, especially for gene mutations, is underutilized.
  • Mugen-UMAP is a new Python tool that adapts UMAP for analyzing single-cell DNA data, allowing for detailed visualization and statistical analysis of gene mutation patterns.
  • In studies of lung cancer and other cancer types, Mugen-UMAP successfully identified cell clusters, revealing important insights for further research in gene mutation analysis.
View Article and Find Full Text PDF

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call mixtures across sites and trees (MAST).

View Article and Find Full Text PDF

The heteroduplex mobility assay (HMA) has proven to be a robust tool for the detection of genetic variation. Here, we describe a simple and rapid application of the HMA by microfluidic capillary electrophoresis, for phylogenetics and population genetic analyses (pgHMA). We show how commonly applied techniques in phylogenetics and population genetics have equivalents with pgHMA: phylogenetic reconstruction with bootstrapping, skyline plots, and mismatch distribution analysis.

View Article and Find Full Text PDF

A current strategy for obtaining haplotype information from several individuals involves short-read sequencing of pooled amplicons, where fragments from each individual is identified by a unique DNA barcode. In this paper, we report a new method to recover the phylogeny of haplotypes from short-read sequences obtained using pooled amplicons from a mixture of individuals, without barcoding. The method, AFPhyloMix, accepts an alignment of the mixture of reads against a reference sequence, obtains the single-nucleotide-polymorphisms (SNP) patterns along the alignment, and constructs the phylogenetic tree according to the SNP patterns.

View Article and Find Full Text PDF

Following publication of the original article [1], the author reported that there are several errors in the original article.

View Article and Find Full Text PDF

Background: In short-read DNA sequencing experiments, the read coverage is a key parameter to successfully assemble the reads and reconstruct the sequence of the input DNA. When coverage is very low, the original sequence reconstruction from the reads can be difficult because of the occurrence of uncovered gaps. Reference guided assembly can then improve these assemblies.

View Article and Find Full Text PDF

Background: Pooling techniques, where multiple sub-samples are mixed in a single sample, are widely used to take full advantage of high-throughput DNA sequencing. Recently, Ranjard et al. (PLoS ONE 13:0195090, 2018) proposed a pooling strategy without the use of barcodes.

View Article and Find Full Text PDF

Next-generation sequencing can be costly and labour intensive. Usually, the sequencing cost per sample is reduced by pooling amplified DNA = amplicons) derived from different individuals on the same sequencing lane. Barcodes unique to each amplicon permit short-read sequences to be assigned appropriately.

View Article and Find Full Text PDF

We describe here the first complete genome assembly of the New Zealand green-lipped mussel, , mitochondrion. The assembly was performed from a mix of long nanopore sequencing reads and short sequencing reads. The genome is 16,005 bp long.

View Article and Find Full Text PDF

Various factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics. Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes the genetic diversity and divergence in viral populations.

View Article and Find Full Text PDF

Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM).

View Article and Find Full Text PDF

Background: Over the last decade, next generation sequencing (NGS) has become widely available, and is now the sequencing technology of choice for most researchers. Nonetheless, NGS presents a challenge for the evolutionary biologists who wish to estimate evolutionary genetic parameters from a mixed sample of unlabelled or untagged individuals, especially when the reconstruction of full length haplotypes can be unreliable. We propose two novel approaches, least squares estimation (LS) and Approximate Bayesian Computation Markov chain Monte Carlo estimation (ABC-MCMC), to infer evolutionary genetic parameters from a collection of short-read sequences obtained from a mixed sample of anonymous DNA using the frequencies of nucleotides at each site only without reconstructing the full-length alignment nor the phylogeny.

View Article and Find Full Text PDF

HBeAg seroconversion is an important stage in the evolution of a chronic hepatitis B virus (HBV) infection that usually leads to control of viral replication and a reduced risk for liver cirrhosis and cancer. Since current therapies for the HBV-associated liver inflammation that is known as chronic hepatitis B (CHB). Rarely induce permanent HBeAg seroconversion, there is a need to understand the mechanisms responsible for the purpose of identifying new therapeutic targets.

View Article and Find Full Text PDF

In the HPTN 052 study, transmission between HIV-discordant couples was reduced by 96% when the HIV-infected partner received suppressive antiretroviral therapy (ART). We examined two transmission events where the newly infected partner was diagnosed after the HIV-infected partner (index) initiated therapy. We evaluated the sequence complexity of the viral populations and antibody reactivity in the newly infected partner to estimate the dates of transmission to the newly infected partners.

View Article and Find Full Text PDF

Natural hosts of simian immunodeficiency virus (SIV), African green monkeys (AGMs), rarely transmit SIV via breast-feeding. In order to examine the genetic diversity of breast milk SIV variants in this limited-transmission setting, we performed phylogenetic analysis on envelope sequences of milk and plasma SIV variants of AGMs. Low-diversity milk virus populations were compartmentalized from that in plasma.

View Article and Find Full Text PDF

Background: Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) is commonly used to identify differentially expressed proteins under two or more experimental or observational conditions. Wu et al (2009) developed a univariate probabilistic model which was used to identify differential expression between Case and Control groups, by applying a Likelihood Ratio Test (LRT) to each protein on a 2D PAGE. In contrast to commonly used statistical approaches, this model takes into account the two possible causes of missing values in 2D PAGE: either (1) the non-expression of a protein; or (2) a level of expression that falls below the limit of detection.

View Article and Find Full Text PDF

For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement.

View Article and Find Full Text PDF

The mechanisms underlying the high levels of hepatitis B virus (HBV) replication that cause hepatitis B e antigen (HBeAg)-negative chronic hepatitis B (e-CHB) are unknown. Impaired anti-HBV immunity, which may be measurable as a relaxation of selection pressure on the virus, is possible. A group of Tongans (n = 345) with a chronic HBV infection, including seven with e-CHB, were genotyped at HLA class I.

View Article and Find Full Text PDF

Recent studies have shown evidence for the coevolution of functionally-related genes. This coevolution is a result of constraints to maintain functional relationships between interacting proteins. The studies have focused on the correlation in gene tree branch lengths of proteins that are directly interacting with each other.

View Article and Find Full Text PDF

Studying the evolutionary mechanisms of feline immunodeficiency virus in the domestic cat (Felis catus), FIV(Fca), provides a good comparison to other lentiviruses, such as HIV and FIV(Pco) in the cougar (Puma concolor). We review the current epidemiological and evolutionary findings of FIV(Fca). In addition to the five accepted FIV(Fca), subtypes, several recent phylogenetic studies have found strains that form separate clades, indicative of novel subtypes.

View Article and Find Full Text PDF

The full repertoire of hepatitis B virus (HBV) peptides that bind to the common HLA class I molecules found in areas with a high prevalence of chronic HBV infection has not been determined. This information may be useful for designing immunotherapies for chronic hepatitis B. We identified amino acid residues under positive selection pressure in the HBV core gene by phylogenetic analysis of cloned DNA sequences obtained from HBV DNA extracted from the sera of Tongan subjects with inactive, HBeAg-negative chronic HBV infections.

View Article and Find Full Text PDF

Coalescent-based Bayesian Markov chain Monte Carlo (MCMC) inference generates estimates of evolutionary parameters and their posterior probability distributions. As the number of sequences increases, the length of time taken to complete an MCMC analysis increases as well. Here, we investigate an approach to distribute the MCMC analysis across a cluster of computers.

View Article and Find Full Text PDF

Two dimensional polyacrylamide gel electrophoresis (2D PAGE) is used to identify differentially expressed proteins and may be applied to biomarker discovery. A limitation of this approach is the inability to detect a protein when its concentration falls below the limit of detection. Consequently, differential expression of proteins may be missed when the level of a protein in the cases or controls is below the limit of detection for 2D PAGE.

View Article and Find Full Text PDF

Three desirable properties for any method of selecting a subset of evolutionary units (EUs) for conservation or for genomic sequencing are discussed. These properties are spread, stability, and applicability. We are motivated by a practical case in which the maximization of phylogenetic diversity (PD), which has been suggested as a suitable method, appears to lead to counterintuitive collections of EUs and does not meet these three criteria.

View Article and Find Full Text PDF