Publications by authors named "Allen D Malony"

Electroencephalographic (EEG) oscillations in multiple frequency bands can be observed during functional activity of the cerebral cortex. An important question is whether activity of focal areas of cortex, such as during finger movements, is tracked by focal oscillatory EEG changes. Although a number of studies have compared EEG changes to functional MRI hemodynamic responses, we can find no previous research that relates the fMRI hemodynamic activity to localization of the multiple EEG frequency changes observed in motor tasks.

View Article and Find Full Text PDF

The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model.

View Article and Find Full Text PDF

Understanding the milliscale (temporal and spatial) dynamics of the human brain activity requires high-resolution modeling of head electromagnetics and source localization of EEG data. We have developed an automated environment to construct individualized computational head models from image segmentation and to estimate conductivity parameters using electrical impedance tomography methods. Algorithms incorporating tissue inhomogeneity and impedance anisotropy in electromagnetics forward simulations have been developed and parallelized.

View Article and Find Full Text PDF