Publications by authors named "Allen C Eaves"

Research on chronic and acute myeloid leukemia (CML/AML) is focused on the development of novel therapeutic strategies to eliminate leukemic stem/progenitor cells that are responsible for drug resistance and disease relapse. Methods to culture hematopoietic stem/progenitor cells (HSPCs) from blood or bone marrow samples are indispensable for investigating disease pathogenesis and delineating drug responses in individual patients. A key challenge in this area is that primary leukemic cells grow poorly in culture or rapidly differentiate and lose their hematopoietic potential.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDSs) pose an important diagnostic and treatment challenge because of the genetic heterogeneity and poorly understood biology of the disease. To investigate initiating genomic alterations and the potential prognostic significance of cryptic genomic changes in low-risk MDS, we performed whole genome tiling path array comparative genomic hybridization (aCGH) on CD34(+) cells from 44 patients with an International Prognostic Scoring System score less than or equal to 1.0.

View Article and Find Full Text PDF

Advancement in our understanding of the biology of adult stem cells and their therapeutic potential relies heavily on meaningful functional assays that can identify and measure stem cell activity in vivo and in vitro. In the mammalian nervous system, neural stem cells (NSCs) are often studied using a culture system referred to as the neurosphere assay. We previously challenged a central tenet of this assay, that all neurospheres are derived from a NSC, and provided evidence that it overestimates NSC frequency, rendering it inappropriate for quantitation of NSC frequency in relation to NSC regulation.

View Article and Find Full Text PDF

Subsets of immune cells can be isolated before analysis by the enzyme-linked immunospot (ELISPOT) assay with various cell separation techniques. This chapter describes techniques to select desired cells or deplete unwanted cells by crosslinking cells to dense or magnetic particles for subsequent separation. The RosetteSep method can be used to isolate specific cell types directly from human whole blood, using the red blood cells (RBCs) present in the sample as dense particles.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are defined by their ability to repopulate all of the hematopoietic lineages in vivo and sustain the production of these cells for the life span of the individual. In the absence of reliable direct markers for HSCs, their identification and enumeration depends on functional long-term, multilineage, in vivo repopulation assays. The extremely low frequency of HSCs in any tissue and the absence of a specific HSC phenotype have made their purification and characterization a highly challenging goal.

View Article and Find Full Text PDF