Unlabelled: Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices.
View Article and Find Full Text PDFPreviously, we have shown that Dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32) knockout mice required significantly more trials to reach criterion than wild-type mice in an operant reversal-learning task. The present study was conducted to examine adult male and female DARPP-32 knockout mice and wild-type controls in a novel object recognition test. Wild-type and knockout mice exhibited comparable behavior during the initial exploration trials.
View Article and Find Full Text PDFDopamine neurotransmission controls motor and perseverative behavior, is mediated by protein phosphorylation, and may be perturbed in disorders of attention and hyperactivity. To assess the role of casein kinase I (CK1) in the regulation of dopamine signaling, we generated a genetically modified mouse line that overexpresses CK1delta (CK1delta OE) specifically in the forebrain. Overexpression was confirmed both at the mRNA and at the protein levels.
View Article and Find Full Text PDFRecent reports have shown that the selective dopamine D(1)-like agonist SKF 83822 [which stimulates adenylate cyclase, but not phospholipase C] induces prominent behavioral seizures in mice, whereas its benzazepine congener SKF 83959 [which stimulates phospholipase C, but not adenylate cyclase] does not. To investigate the relative involvement of D(1) vs D(5) receptors in mediating seizures, ethological behavioral topography and cortical EEGs were recorded in D(1), D(5) and DARPP-32 knockout mice in response to a convulsant dose of SKF 83822. SKF 83822-induced behavioral and EEG seizures were gene dose-dependently abolished in D(1) knockouts.
View Article and Find Full Text PDFThe role of D(1)-like [D(1), D(5)] and D(2)-like [D(2), D(3), D(4)] dopamine receptors and dopamine transduction via DARPP-32 in topographies of orofacial movement was assessed in restrained mice with congenic D(4) vs. D(5) receptor vs. DARPP-32 'knockout'.
View Article and Find Full Text PDFHerbal cannabis, smoked in the form of marihuana or hashish, is the most common illicit drug consumed in the Western world. In the brain, cannabinoids interact with neuronal CB1 receptors, thereby producing a marked reduction of motor activity. Here, we report that the motor depressant effect produced by the cannabinoid receptor agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]trans-4-(3-hydroxypropyl)cyclohexanol (CP55,940) is attenuated by genetic inactivation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), which is abundantly expressed in the medium spiny neurons of the striatum.
View Article and Find Full Text PDFMice lacking DARPP-32, a striatal-enriched phosphoprotein, show abnormal behavioral and biochemical responses to cocaine, but the role of individual phosphorylation sites in DARPP-32 in these responses is unknown. We show here that mutation of Thr-34 in DARPP-32 mimicked the behavioral phenotype of the constitutive DARPP-32 knockout in cocaine-induced place conditioning, locomotor activity, and sensitization paradigms. In contrast, mutations of Thr75 did not affect conditioned place preference or the acute locomotor response to cocaine, but DARPP-32 Thr-75 mutants showed no locomotor sensitization in response to repeated cocaine administration.
View Article and Find Full Text PDFBackground: The addictive properties of nicotine are mediated via dopaminergic pathways and their post-synaptic neurons in the striatum. Because post-synaptic neurons within the striatum contain high levels of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), we hypothesized that DARPP-32 may functionally contribute to the behavioral effects of nicotine.
Methods: We examined the behavioral effects of nicotine and the phosphorylation state of DARPP-32 in wild-type (WT) and DARPP-32 knockout (KO) mice.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK.
View Article and Find Full Text PDFThe regulation of adenosine kinase (AK) activity has the potential to control intracellular and interstitial adenosine (Ado) concentrations. In an effort to study the role of AK in Ado homeostasis in the central nervous system, two isoforms of the enzyme were cloned from a mouse brain cDNA library. Following overexpression in bacterial cells, the corresponding proteins were purified to homogeneity.
View Article and Find Full Text PDFGiven the critical role of dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32) in the regulation of dopaminergic function, DARPP-32-null mutant mice congenic on the inbred C57BL/6 strain for 10 generations were examined phenotypically for their ethogram of responsivity to the selective D2-like receptor agonist RU 24213 (N-n-propyl-N-phenylethyl-p-3-hydroxyphenylethylamine) and the selective D2-like receptor antagonist YM 09151-2 (cis-N-[1-benzyl-2-methyl-pyrrolidin-3-yl]-5-chloro-2-methoxy-4-methylaminobenzamide), using procedures that resolve all topographies of behavior in the natural repertoire. After vehicle challenge, levels of sniffing and rearing seated were reduced in DARPP-32 mutants; the injection procedure seems to constitute a "stressor" that reveals phenotypic effects of DARPP-32 deletion not apparent under natural conditions. Topographical effects of 0.
View Article and Find Full Text PDFInteractions between dopaminergic and glutamatergic systems in the striatum are thought to underlie both the symptoms and adverse effects of treatment of Parkinson's disease. We have previously reported that activation of the dopamine D1 receptor triggers a rapid redistribution of striatal N-methyl-d-aspartate (NMDA) receptors between intracellular and postsynaptic sub-cellular compartments. To unravel the signaling pathways underlying this trafficking, we studied mice with targeted disruptions of either the gene that encodes the dopamine- and cAMP-regulated phosphoprotein (DARPP-32), a potent and selective inhibitor of protein phosphatase-1, or the protein tyrosine kinase Fyn.
View Article and Find Full Text PDFThree distinct classes of drugs: dopaminergic agonists (such as D-amphetamine), serotonergic agonists (such as LSD), and glutamatergic antagonists (such as PCP) all induce psychotomimetic states in experimental animals that closely resemble schizophrenia symptoms in humans. Here we implicate a common signaling pathway in mediating these effects. In this pathway, dopamine- and an adenosine 3',5'-monophosphate (cAMP)-regulated phospho-protein of 32 kilodaltons (DARPP-32) is phosphorylated or dephosphorylated at three sites, in a pattern predicted to cause a synergistic inhibition of protein phosphatase-1 and concomitant regulation of its downstream effector proteins glycogen synthesis kinase-3 (GSK-3), cAMP response element-binding protein (CREB), and c-Fos.
View Article and Find Full Text PDFPhosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR1 at Ser(845) enhances AMPA channel activity. This study demonstrates that Ser(845) is rapidly dephosphorylated upon AMPA receptor activation in nucleus accumbens slices. AMPA-induced dephosphorylation at Ser(845) was blocked by CNQX, an AMPA receptor antagonist, by nifedipine, an L-type Ca(2+) channel antagonist, or by cyclosporin A, a calcineurin inhibitor.
View Article and Find Full Text PDFCongenic (10 backcrosses into C57BL/6J) mutants with targeted gene deletion of DARPP-32, a neuronal phosphoprotein regarded as an essential mediator of the biological effects of dopamine (DA), were assessed phenotypically using an ethologically based approach that resolves all topographies of behavior in the mouse repertoire. Over initial exploration, female, but not male, DARPP-32 mutants evidenced increased locomotion and decreased grooming, while a decrease in rearing seated was evident in mutants of both genders; continuing assessment over several hours did not reveal additional phenotypic effects. Following challenge with the nonselective DA receptor agonist apomorphine, low doses were associated with reduced levels of sniffing, grooming, total rearing, and rearing seated in DARPP-32 mutants relative to wildtypes; this would suggest some role for DARPP-32 in mediating the biological effects of presynaptic D(2)-like autoreceptor or inhibitory postsynaptic D(2)-like receptor activation.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
September 2003
The phosphoprotein DARPP-32 (dopamine and cAMP-regulated phosphoprotein 32 kDa) plays a central role in mediating the actions of a variety of neurotransmitters in medium spiny neurons of the striatum (Greengard, 1990; Fienberg et al., 1998). This study examines D1 and D2 dopamine (DA) agonist effects on the membrane properties of identified striatal neurons recorded in slices obtained from wild-type and DARPP-32-knockout mice.
View Article and Find Full Text PDFDopamine (DA), via activation of D1 receptors, enhances N-methyl-D-aspartate (NMDA)-evoked responses in striatal neurons. The present investigation examined further the properties of this enhancement and the potential mechanisms by which this enhancement might be effected. Dissociated medium-sized striatal neurons were obtained from intact rats and mice or mutant mice lacking the DA and cyclic adenosine 3',5' monophosphate (cAMP)-regulated phosphoprotein of M(R) 32,000 (DARPP-32).
View Article and Find Full Text PDFCaffeine has been imbibed since ancient times in tea and coffee, and more recently in colas. Caffeine owes its psychostimulant action to a blockade of adenosine A(2A) receptors, but little is known about its intracellular mechanism of action. Here we show that the stimulatory effect of caffeine on motor activity in mice was greatly reduced following genetic deletion of DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000).
View Article and Find Full Text PDFBackground: Modulation of protein phosphorylation by dopamine is thought to play an important role in drug reward. Protein phosphatase-1 (PP-1) is known to mediate some of the changes in neuronal signaling that occur following activation of the dopaminergic system.
Methods: Two endogenous inhibitors of PP-1 are dopamine and cyclic 3', 5' adenosine monophosphate-regulated phosphoprotein (DARPP-32) and Inhibitor-1 (I-1).
Proc Natl Acad Sci U S A
March 2002
Serotonin is implicated in the regulation of complex sensory, motor, affective, and cognitive functions. However, the biochemical mechanisms whereby this neurotransmitter exerts its actions remain largely unknown. DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of molecular weight 32,000) is a phosphoprotein that has primarily been characterized in relation to dopaminergic neurotransmission.
View Article and Find Full Text PDFFluoxetine (Prozac) is the most widely prescribed medication for the treatment of depression. Nevertheless, little is known about the molecular basis of its clinical efficacy, apart from the fact that fluoxetine increases the synaptic availability of serotonin. Here we show that, in vivo, fluoxetine, given either acutely or chronically, regulates the phosphorylation state of dopamine- and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32) at multiple sites in prefrontal cortex, hippocampus, and striatum.
View Article and Find Full Text PDF