Publications by authors named "Allchorne A"

Oxytocin is primarily synthesised in the brain and is widely known for its role in lactation and parturition after being released into the blood from the posterior pituitary gland. Nevertheless, peripheral tissues have also been reported to express oxytocin. Using systemic injection of a recombinant adeno-associated virus vector, we investigated the expression of the green fluorescent protein Venus under the control of the oxytocin promoter in the gastrointestinal tract, pancreas and testes of adult rats.

View Article and Find Full Text PDF

Physiological circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN). The activity of SCN cells is synchronised by environmental signals, including light information from retinal ganglion cells (RGCs). We recently described a population of vasopressin-expressing RGCs (VP-RGC) that send axonal projections to the SCN.

View Article and Find Full Text PDF

In the main olfactory system, odours are registered at the main olfactory epithelium and are then processed at the main olfactory bulb (MOB) and, subsequently, by the anterior olfactory nucleus (AON), the piriform cortex (PC) and the cortical amygdala. Previously, we reported populations of vasopressin neurones in different areas of the rat olfactory system, including the MOB, accessory olfactory bulb (AOB) and the AON and showed that these are involved in the coding of social odour information. Utilising immunohistochemistry and a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we now show a population of vasopressin neurones in the PC.

View Article and Find Full Text PDF

Key Points: A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light.

View Article and Find Full Text PDF

Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions.

View Article and Find Full Text PDF

Many clinical cases of chronic pain exhibit both neuropathic and inflammatory components. In contrast, most animal models of chronic pain focus on one type of injury alone. Here we present a novel combined model of both neuropathic and inflammatory pain and characterise its distinctive properties.

View Article and Find Full Text PDF

Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable.

View Article and Find Full Text PDF

Sensitization to inflammatory pain is a pathological form of neuronal plasticity that is poorly understood and treated. Here we examine the role of the SH3 domain of postsynaptic density 95 (PSD95) by using mice that carry a single amino-acid substitution in the polyproline-binding site. Testing multiple forms of plasticity we found sensitization to inflammation was specifically attenuated.

View Article and Find Full Text PDF

Cooling of the skin has long been thought to be beneficial in pain states but intense cold is clearly noxious. Does cooling lead to pain or gain? Rapid progress in this controversy has been made since the discovery of specific ion channels of the transient receptor potential (TRP) family that are activated by cooling of sensory nerve cells to below body temperature. This review focuses on the role of one of these, TRPM8, which has been implicated in cool sensation and cold pain by recent knockout mouse studies, but remarkably also appears capable of eliciting a novel analgesic gating control over noxious inputs in chronic pain states.

View Article and Find Full Text PDF

Laminitis is a common debilitating disease in horses that involves painful disruption of the lamellar dermo-epidermal junction within the hoof. This condition is often refractory to conventional anti-inflammatory analgesia and results in unremitting pain, which in severe cases requires euthanasia. The mechanisms underlying pain in laminitis were investigated using quantification of behavioural pain indicators in conjunction with histological studies of peripheral nerves innervating the hoof.

View Article and Find Full Text PDF
Article Synopsis
  • When nerve cells in the central nervous system (CNS) get injured, they usually can't grow back because the environment around them doesn't help and they're not very good at healing themselves.
  • However, when peripheral nerves (which are outside the CNS) are injured, they can be made to grow better by using certain growth signals, like a chemical called GDNF.
  • Researchers found that using the right amount of GDNF helps these injured nerves grow back more effectively, especially if the nerves were prepared beforehand, and too much GDNF isn't as helpful.
View Article and Find Full Text PDF

Microarray expression profiles reveal substantial changes in gene expression in the ipsilateral dorsal horn of the spinal cord in response to three peripheral nerve injury models of neuropathic pain. However, only 54 of the 612 regulated genes are commonly expressed across all the neuropathic pain models. Many of the commonly regulated transcripts are immune related and include the complement components C1q, C3, and C4, which we find are expressed only by microglia.

View Article and Find Full Text PDF

Background: Clinical and experimental studies of neuropathic pain support the hypothesis that a functional coupling between postganglionic sympathetic efferent and sensory afferent fibers contributes to the pain. We investigated whether neuropathic pain-related behavior in the spared nerve injury (SNI) rat model is dependent on the sympathetic nervous system.

Results: Permanent chemical sympathectomy was achieved by daily injection of guanethidine (50 mg/kg s.

View Article and Find Full Text PDF

We used a mouse with deletion of exons 4, 5, and 6 of the SCN11A (sodium channel, voltage-gated, type XI, alpha) gene that encodes the voltage-gated sodium channel Na(v)1.9 to assess its contribution to pain. Na(v)1.

View Article and Find Full Text PDF

We report that GTP cyclohydrolase (GCH1), the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, is a key modulator of peripheral neuropathic and inflammatory pain. BH4 is an essential cofactor for catecholamine, serotonin and nitric oxide production. After axonal injury, concentrations of BH4 rose in primary sensory neurons, owing to upregulation of GCH1.

View Article and Find Full Text PDF

Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction.

View Article and Find Full Text PDF

TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli.

View Article and Find Full Text PDF

Background: Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia). To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain.

Results: We demonstrate that a Peltier-cooled cold plate with +/- 1 degrees C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats.

View Article and Find Full Text PDF

Early onset generalized dystonia is a dominantly inherited movement disorder caused by neuronal dysfunction without an apparent loss of neurons. The same single mutation (GAG deletion) causes most cases and results in loss of a glutamic acid (E) in the carboxy terminal region of torsinA (Delta302/303). To model the neuronal involvement, adult rat primary sensory dorsal root ganglion neurons in culture were infected with lentivirus vectors expressing human wild-type or mutant torsinA.

View Article and Find Full Text PDF

Mutations in enzymes involved in sphingolipid metabolism and trafficking cause a variety of neurological disorders, but details of the molecular pathophysiology remain obscure. SPTLC1 encodes one subunit of serine palmitoyltransferase (SPT), the rate-limiting enzyme in sphingolipid synthesis. Mutations in SPTLC1 cause hereditary sensory and autonomic neuropathy (type I) (HSAN1), an adult onset, autosomal dominant neuropathy.

View Article and Find Full Text PDF

Bradykinin, an inflammatory mediator, sensitizes nociceptor peripheral terminals reducing pain threshold. We now show that the B2 kinin receptor is expressed in rat dorsal horn neurons and that bradykinin, a B2-specific agonist, augments AMPA- and NMDA-induced, and primary afferent-evoked EPSCs, and increases the frequency and amplitude of miniature EPSCs in superficial dorsal horn neurons in vitro. Administration of bradykinin to the spinal cord in vivo produces, moreover, an NMDA-dependent hyperalgesia.

View Article and Find Full Text PDF

In both the spared nerve injury (SNI) and spinal nerve ligation (SNL) rat peripheral neuropathic pain models the presynaptic inhibitory effect of the mu opioid receptor (MOR) agonist (DAMGO) on primary afferent-evoked excitatory postsynaptic currents (EPSCs) and miniature EPSCs in superficial dorsal horn neurons is substantially reduced, but only in those spinal cord segments innervated by injured primary afferents. The two nerve injury models also reduce the postsynaptic potassium channel opening action of DAMGO on lamina II spinal cord neurons, but again only in segments receiving injured afferent input. The inhibitory action of DAMGO on ERK (extracellular signal-regulated kinase) activation in dorsal horn neurons is also reduced in affected segments following nerve injury.

View Article and Find Full Text PDF

Progressive tactile hypersensitivity (PTH) manifesting after sciatic nerve crush and spared nerve injury (SNI) are two distinct rodent experimental models of neuropathic pain. PTH develops months after recovery from the nerve crush in response to repeated intermittent low-threshold mechanical stimulation of the reinnervated sciatic nerve skin territory and represents a model of stimulus-induced pain. SNI is characterized by an early and sustained increase in stimulus-evoked pain sensitivity in the intact skin territory of the spared sural nerve after sectioning of the two other terminal branches of the sciatic nerve.

View Article and Find Full Text PDF

The regulators of G-protein signaling (RGS) proteins are a family of intracellular modulators of G-protein coupled receptor (GPCR) sensitivity. They act as GTPase accelerating proteins returning the Galpha subunit back to an inactive latent state. We find that RGS3 and RGS4 are constitutively expressed at high levels in C-fiber primary sensory neurons in the adult rat dorsal root ganglion (DRG) and transection of the sciatic nerve results in a substantial down regulation of these transcripts.

View Article and Find Full Text PDF

Neuropathic pain syndromes are characterized by spontaneous pain and by stimulus-evoked allodynia and hyperalgesia. Stimulus-induced pain, i.e.

View Article and Find Full Text PDF