Publications by authors named "Allan Surgenor"

Several generations of ATP-competitive anti-cancer drugs that inhibit the activity of the intracellular kinase domain of the epidermal growth factor receptor (EGFR) have been developed over the past twenty years. The first-generation of drugs such as gefitinib bind reversibly and were followed by a second-generation such as dacomitinib that harbor an acrylamide moiety that forms a covalent bond with C797 in the ATP binding pocket. Resistance emerges through mutation of the T790 gatekeeper residue to methionine, which introduces steric hindrance to drug binding and increases the for ATP.

View Article and Find Full Text PDF

Following the identification of thieno[2,3-]pyrimidine-based selective and potent inhibitors of MCL-1, we explored the effect of core swapping at different levels of advancement. During hit-to-lead optimization, X-ray-guided S-N replacement in the core provided a new vector, whose exploration led to the opening of the so-called deep-S2 pocket of MCL-1. Unfortunately, the occupation of this region led to a plateau in affinity and had to be abandoned.

View Article and Find Full Text PDF

Inhibitors of leucine-rich repeat kinase 2 (LRRK2) and mutants, such as G2019S, have potential utility in Parkinson's disease treatment. Fragment hit-derived pyrrolo[2,3-]pyrimidines underwent optimization using X-ray structures of LRRK2 kinase domain surrogates, based on checkpoint kinase 1 (CHK1) and a CHK1 10-point mutant. (2)-2-Methylpyrrolidin-1-yl derivative (LRRK2 G2019S c 0.

View Article and Find Full Text PDF

The serine/threonine kinase DYRK1A has been implicated in regulation of a variety of cellular processes associated with cancer progression, including cell cycle control, DNA damage repair, protection from apoptosis, cell differentiation, and metastasis. In addition, elevated-level DYRK1A activity has been associated with increased severity of symptoms in Down's syndrome. A selective inhibitor of DYRK1A could therefore be of therapeutic benefit.

View Article and Find Full Text PDF

UDP-3--acyl--acetylglucosamine deacetylase (LpxC) is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of Lipid A, an essential component of the cell envelope of Gram-negative bacteria. The most advanced, disclosed LpxC inhibitors showing antibacterial activity coordinate zinc through a hydroxamate moiety with concerns about binding to other metalloenzymes. Here, we describe the discovery, optimization, and efficacy of two series of compounds derived from fragments with differing modes of zinc chelation.

View Article and Find Full Text PDF

Myeloid cell leukemia 1 (Mcl-1) has emerged as an attractive target for cancer therapy. It is an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here we report the discovery of our clinical candidate S64315, a selective small molecule inhibitor of Mcl-1.

View Article and Find Full Text PDF

Fragment based methods are now widely used to identify starting points in drug discovery and generation of tools for chemical biology. A significant challenge is optimization of these weak binding fragments to hit and lead compounds. We have developed an approach where individual reaction mixtures of analogues of hits can be evaluated without purification of the product.

View Article and Find Full Text PDF

Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation when observed in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy, has emerged as an attractive target for cancer therapy. Here, we report the discovery of selective small molecule inhibitors of Mcl-1 that inhibit cellular activity. Fragment screening identified thienopyrimidine amino acids as promising but nonselective hits that were optimized using nuclear magnetic resonance and X-ray-derived structural information.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinson's disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity.

View Article and Find Full Text PDF

Libraries of nonpurified resorcinol amide derivatives were screened by surface plasmon resonance (SPR) to determine the binding dissociation constant (off-rate, k) for compounds binding to the pyruvate dehydrogenase kinase (PDHK) enzyme. Parallel off-rate measurements against HSP90 and application of structure-based drug design enabled rapid hit to lead progression in a program to identify pan-isoform ATP-competitive inhibitors of PDHK. Lead optimization identified selective sub-100-nM inhibitors of the enzyme which significantly reduced phosphorylation of the E1α subunit in the PC3 cancer cell line in vitro.

View Article and Find Full Text PDF

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1.

View Article and Find Full Text PDF

Inhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays.

View Article and Find Full Text PDF

78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM.

View Article and Find Full Text PDF

Pin1 is an emerging oncology target strongly implicated in Ras and ErbB2-mediated tumourigenesis. Pin1 isomerizes bonds linking phospho-serine/threonine moieties to proline enabling it to play a key role in proline-directed kinase signalling. Here we report a novel series of Pin1 inhibitors based on a phenyl imidazole acid core that contains sub-μM inhibitors.

View Article and Find Full Text PDF

The peptidyl prolyl cis/trans isomerase Pin1 is a promising molecular target for anti-cancer therapeutics. Here we report the structure-guided evolution of an indole 2-carboxylic acid fragment hit into a series of alpha-benzimidazolyl-substituted amino acids. Examples inhibited Pin1 activity with IC(50) <100nM, but were inactive on cells.

View Article and Find Full Text PDF

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72.

View Article and Find Full Text PDF

The design and synthesis of novel adenosine-derived inhibitors of HSP70, guided by modeling and X-ray crystallographic structures of these compounds in complex with HSC70/BAG-1, is described. Examples exhibited submicromolar affinity for HSP70, were highly selective over HSP90, and some displayed potency against HCT116 cells. Exposure of compound 12 to HCT116 cells caused significant reduction in cellular levels of Raf-1 and Her2 at concentrations similar to that which caused cell growth arrest.

View Article and Find Full Text PDF

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential chemotherapeutic agents for cancer. Here, we describe the structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold. Analogues from this series have high affinity for Hsp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines where they inhibit proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72.

View Article and Find Full Text PDF

Virtual screening against a pCDK2/cyclin A crystal structure led to the identification of a potent and novel CDK2 inhibitor, which exhibited an unusual mode of interaction with the kinase binding motif. With the aid of X-ray crystallography and modelling, a medicinal chemistry strategy was implemented to probe the interactions seen in the crystal structure and to establish SAR. A fragment-based approach was also considered but a different, more conventional, binding mode was observed.

View Article and Find Full Text PDF

Although the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) shows clinical promise, potential limitations encourage development of alternative chemotypes. We discovered the 3,4-diarylpyrazole resorcinol CCT018159 by high-throughput screening and used structure-based design to generate more potent pyrazole amide analogues, exemplified by VER-49009. Here, we describe the detailed biological properties of VER-49009 and the corresponding isoxazole VER-50589.

View Article and Find Full Text PDF

Inhibition of the Chk1 kinase by small molecules is of great therapeutic interest for oncology and in understanding the cellular regulation of the G2/M checkpoint. We report how computational docking of a large electronic catalogue of compounds to an X-ray structure of the Chk1 ATP-binding site allowed prioritisation of a small subset of these compounds for assay. This led to the discovery of 10 novel Chk1 inhibitors, distributed among nine new and clearly different chemical scaffolds.

View Article and Find Full Text PDF

Novel piperazinyl, morpholino and piperidyl derivatives of the pyrazole-based Hsp90 inhibitor CCT018159 are described. Structure-activity relationships have been elucidated by X-ray co-crystal analysis of the new compounds bound to the N-terminal domain of human Hsp90. Key features of the binding mode are essentially identical to the recently reported potent analogue VER-49009.

View Article and Find Full Text PDF

Crystallographic and modelling data, in conjunction with a medicinal chemistry template-hopping approach, led to the identification of a series of novel and potent inhibitors of human cyclin-dependent kinase 2 (CDK2), with selectivity over glycogen synthase kinase-3beta (GSK-3beta). One example had a CDK2 IC(50) of 120 nM and showed selectivity over GSK-3beta of 167-fold.

View Article and Find Full Text PDF

Information from X-ray crystal structures of Hsp90 inhibitors bound to the human Hsp90 molecular chaperone was used to assist in the design of 3-(5-chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as novel inhibitors of Hsp90. Accessing an extra interaction with the protein via Phe138 gave a significant increase in binding potency compared to similar analogues that do not make this interaction.

View Article and Find Full Text PDF

Docking-based virtual screening identified 1-(2-phenol)-2-naphthol compounds as a new class of Hsp90 inhibitors of low to sub-micromolar potency. Here we report the binding affinities and cellular activities of several members of this class. A high resolution crystal structure of the most potent compound reveals its binding mode in the ATP binding site of Hsp90, providing a rationale for the observed activity of the series and suggesting strategies for developing compounds with improved properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrg9qinean1he996htuj1189d20md1lt1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once