Publications by authors named "Allan Sauvat"

Background: Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON).

Methods: We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD.

View Article and Find Full Text PDF

Cholesterol serves as a vital lipid that regulates numerous physiological processes. Nonetheless, its role in regulating cell death processes remains incompletely understood. In this study, we investigated the role of cholesterol trafficking in immunogenic cell death.

View Article and Find Full Text PDF
Article Synopsis
  • Cushing's syndrome is linked to high levels of glucocorticoids and is associated with increased plasma levels of ACBP/DBI, which stimulates food intake and fat production.
  • Researchers explored multiple methods to inhibit ACBP/DBI in mice, including genetic modifications and antibody injections, to address Cushing's symptoms.
  • The findings suggest that targeting ACBP/DBI could be an effective strategy for treating Cushing's syndrome and its related complications like obesity and diabetes.
View Article and Find Full Text PDF

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations.

View Article and Find Full Text PDF

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking.

View Article and Find Full Text PDF

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAR) γ2 subunit (GABARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects.

View Article and Find Full Text PDF

Cellular senescence is a molecular process that is activated in response to a large variety of distinct stress signals. Mechanistically, cellular senescence is characterized by an arrest in cell cycle accompanied by phenotypic adaptations and physiological alterations including changes in the secretory profile of senescent cells termed the senescence-associated secretory phenotype (SASP). Here we describe a detailed, automation- compatible method for the detection of senescence-associated beta galactosidase (SA-β-gal) activity as a hallmark of cellular senescence using a conventional fluorescent microscope equipped with a transmitted light module.

View Article and Find Full Text PDF

Autophagy inducers can prevent cardiovascular aging and age-associated diseases including atherosclerosis. Therefore, we hypothesized that autophagy-inducing compounds that act on atherosclerosis-relevant cells might have a protective role in the development of atherosclerosis. Here we identified 3,4-dimethoxychalcone (3,4-DC) as an inducer of autophagy in several cell lines from endothelial, myocardial and myeloid/macrophagic origin, as demonstrated by the aggregation of the autophagosome marker GFP-LC3 in the cytoplasm of cells, as well as the downregulation of its nuclear pool indicative of autophagic flux.

View Article and Find Full Text PDF

Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis.

View Article and Find Full Text PDF

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver.

View Article and Find Full Text PDF

Anticancer drugs that suppress DNA-to-RNA transcription are particularly efficient in stimulating immunogenic cell death and hence eradicate malignant cells in a way that they will ignite an antitumor immune response. This is therapeutically relevant as it allows treatment response to last beyond drug discontinuation. For this reason, it is important to measure transcription inhibition in a precise fashion.

View Article and Find Full Text PDF

The radiochemotherapy- or chemotherapy-induced stimulation of immunogenic cell death (ICD) affecting malignant cells ignites antitumor immune responses that are clinically relevant as they allow to achieve durable responses beyond treatment discontinuation. The mechanistic exploration of ICD and the discovery of agents and interventions that are endowed with the capacity to elicit ICD is of the utmost importance. Here, we describe an assay for the assessment of type I interferon (IFN) production, which is one of the salient features of ICD.

View Article and Find Full Text PDF
Article Synopsis
  • - Biomarkers are necessary to optimize the use of immune-checkpoint blockers (ICB) like pembrolizumab for patients with localized muscle-invasive bladder cancer (MIBC), as highlighted by the study on T cells and immune responses.
  • - The research identified follicular helper CD4+ T cells (TFH) and specific antibodies against E. coli as potential biomarkers that correlate with better clinical outcomes for patients receiving pembrolizumab treatment.
  • - Understanding the connections between tumor infections and immune responses can lead to improved therapeutic strategies and better patient management in the future.
View Article and Find Full Text PDF

Background: High activity of poly(ADP-ribose) polymerase-1 (PARP1) in non-small cell lung cancer (NSCLC) cells leads to an increase in immunohistochemically detectable PAR, correlating with poor prognosis in patients with NSCLC, as well as reduced tumor infiltration by cytotoxic T lymphocytes (CTLs). Intrigued by this observation, we decided to determine whether PARP1 activity in NSCLC cells may cause an alteration of anticancer immunosurveillance.

Methods: Continuous culture of mouse NSCLC cells in the presence of cisplatin led to the generation of cisplatin-resistant PAR clones.

View Article and Find Full Text PDF

Background: Retrospective clinical trials reported a reduced local relapse rate, as well as improved overall survival after injection of local anesthetics during cancer surgery. Here, we investigated the anticancer effects of six local anesthetics used in clinical practice.

Results: , local anesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress characterized by the splicing of X-box binding protein 1 (XBP1s) mRNA, cleavage of activating transcription factor 6 (ATF6), phosphorylation of eIF2α and subsequent upregulation of activating transcription factor 4 (ATF4).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice.

View Article and Find Full Text PDF

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway.

View Article and Find Full Text PDF

Colorectal cancers (CRC) can be classified into four consensus molecular subtypes (CMS), among which CMS1 has the best prognosis, contrasting with CMS4 that has the worst outcome. CMS4 CRC is notoriously resistant against therapeutic interventions, as demonstrated by preclinical studies and retrospective clinical observations. Here, we report the finding that two clinically employed agents, everolimus (EVE) and plicamycin (PLI), efficiently target the prototypic CMS4 cell line MDST8.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC.

View Article and Find Full Text PDF

Robotized high throughput screening allows for the assessment of autophagy in a large number of samples. Here, we describe a drug discovery platform for the phenotypic identification of novel autophagy inducers by means of automated cell biology workflows employing robotized cell culture, sample preparation and data acquisition. In this setting, fluorescent biosensor cells that express microtubule-associated proteins 1A/1B light chain 3B (best known as LC3) conjugated to green fluorescent protein (GFP), are utilized together with automated high content microscopy for the image-based assessment of autophagy.

View Article and Find Full Text PDF

Lysosomes are placed at the center of cellular trafficking and degradative pathways. They also function as a signaling platform for nutrient sensing and metabolic reprogramming. Lysosomes play crucial roles in cellular adaptation in response to stress and are tightly connected to a variety of cell death modalities.

View Article and Find Full Text PDF

B-cell maturation antigen (BCMA) is an attractive therapeutic target highly expressed on differentiated plasma cells in multiple myeloma and other B-cell malignancies. GSK2857916 (belantamab mafodotin, BLENREP) is a BCMA-targeting antibody-drug conjugate approved for the treatment of relapsed/refractory multiple myeloma. We report that GSK2857916 induces immunogenic cell death in BCMA-expressing cancer cells and promotes dendritic cell activation and GSK2857916 treatment enhances intratumor immune cell infiltration and activation, delays tumor growth, and promotes durable complete regressions in immune-competent mice bearing EL4 lymphoma tumors expressing human BCMA (EL4-hBCMA).

View Article and Find Full Text PDF

Macroautophagy (hereafter referred to as autophagy) serves the liberation of energy resources through the degradation of cellular components and is characterized by the formation of double-membraned vesicles, commonly referred to as autophagosomes. Microtubule-associated proteins 1A/1B light chain 3B (hereafter referred to as LC3) plays a crucial role during autophagosome formation, as cleavage of its immature form and subsequent conjugation to phosphatidylethanolamine facilitates autophagosomal membrane biogenesis. Indeed, the redistribution of green fluorescent protein (GFP)-conjugated LC3 from a diffuse cytosolic pattern into forming autophagosomes constitutes a morphological phenotype (commonly referred to as LC3 puncta) applicable to phenotypic analysis.

View Article and Find Full Text PDF