Publications by authors named "Allan S Johnson"

Ultrashort pulses can excite or ionize molecules and populate coherent electronic wave packets, inducing complex dynamics. In this Letter, we simulate the coupled electron-nuclear dynamics upon ionization to different electronic wave packets of (deuterated) benzene and fluoro-benzene molecules, quantum mechanically and in full dimensionality. In fluoro-benzene, the calculations unravel both interstate and intrastate quantum interferences that leave clear signatures of attochemistry and charge-directed dynamics in the shape of the autocorrelation function.

View Article and Find Full Text PDF

Measuring the spectral phase of a pulse is key for performing wavelength resolved ultrafast measurements in the few femtosecond regime. However, accurate measurements in real experimental conditions can be challenging. We show that the reflectivity change induced by coherent phonons in a quantum material can be used to infer the spectral phase of an optical probe pulse with few-femtosecond accuracy.

View Article and Find Full Text PDF

Spontaneous C-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C symmetry is restored.

View Article and Find Full Text PDF

In this work, we present an achromatic pump-probe setup covering the visible (VIS) to near-infrared (NIR) wavelength regions (500-3000 nm) for few-cycle pulses. Both the pump and probe arms can work either in the VIS or the NIR wavelength regions, making our setup suitable for multi-color, broadband pump-probe measurements. In particular, our setup minimizes time-smearing due to the phase front curvature, an aspect of ultrafast spectroscopy that has been missing from previous works and allowing us to achieve sub-20-fs temporal resolution.

View Article and Find Full Text PDF

Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium and oxygen x-ray absorption edges with nanometer-scale resolution.

View Article and Find Full Text PDF

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

View Article and Find Full Text PDF

We present a new methodology for measuring few-femtosecond electronic and nuclear dynamics in both atoms and polyatomic molecules using multidimensional high harmonic generation (HHG) spectroscopy measurements, in which the spectra are recorded as a function of the laser intensity to form a two-dimensional data set. The method is applied to xenon atoms and to benzene molecules, the latter exhibiting significant fast nuclear dynamics following ionization. We uncover the signature of the sub-cycle evolution of the returning electron flux in strong-field ionized xenon atoms, implicit in the strong field approximation but not previously observed directly.

View Article and Find Full Text PDF

Tuneable ultrafast laser pulses are a powerful tool for measuring difficult-to-access degrees of freedom in materials science. In general these experiments require the ability to address resonances and excitations both above and below the bandgap of materials, and to probe their response at the timescale of the fastest non-trivial internal dynamics. This drives the need for ultrafast sources capable of delivering 10-15 fs duration pulses tuneable across the entire visible (VIS) and near infrared (NIR) range, 500- 3000 nm, as well as the characterization of these sources.

View Article and Find Full Text PDF

High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses.

View Article and Find Full Text PDF

Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterize tuneable 3 fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.

View Article and Find Full Text PDF

There has been considerable recent interest in tabletop soft X-ray attosecond sources enabled by the new generation of intense, few-cycle laser sources at operating wavelengths longer than 800 nm. In our recent work [Johnson , Sci. Adv.

View Article and Find Full Text PDF

Laser-driven high-harmonic generation provides the only demonstrated route to generating stable, tabletop attosecond x-ray pulses but has low flux compared to other x-ray technologies. We show that high-harmonic generation can produce higher photon energies and flux by using higher laser intensities than are typical, strongly ionizing the medium and creating plasma that reshapes the driving laser field. We obtain high harmonics capable of supporting attosecond pulses up to photon energies of 600 eV and a photon flux inside the water window (284 to 540 eV) 10 times higher than previous attosecond sources.

View Article and Find Full Text PDF

We present an apparatus for performing gas phase high-harmonic generation spectroscopy of molecules primarily found in the liquid phase. Liquid molecular samples are heated in a temperature controlled bath and their vapour is used to back a continuous flow gas jet, with vapour pressures of over 1 bar possible. In order to demonstrate the system, we perform high harmonic spectroscopy experiments in benzene with a 1.

View Article and Find Full Text PDF

The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime.

View Article and Find Full Text PDF

We present a variant of spatially encoded spectral shearing interferometry for measuring two-dimensional spatio-temporal slices of few-cycle pulses centered around 2 μm. We demonstrate experimentally that the device accurately retrieves the pulse-front tilt caused by angular dispersion of two-cycle pulses. We then use the technique to characterize 500-650 μJ pulses from a hollow fiber pulse compressor, with durations as short as 7.

View Article and Find Full Text PDF

We theoretically study high-harmonic generation in toluene, ortho-xylene and fluorobenzene driven by a 1.8 μm ultrashort pulse. We find that the chemical substitutions have a strong influence on the amplitude and phase of the emission from the highest occupied molecular orbital, despite having a small influence on the orbital itself.

View Article and Find Full Text PDF

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI.

View Article and Find Full Text PDF

The origin of the coherences in two-dimensional spectroscopy of photosynthetic complexes remains disputed. Recently, it has been shown that in the ultrashort-pulse limit, oscillations in a frequency-integrated pump-probe signal correspond exclusively to electronic coherences, and thus such experiments can be used to form a test for electronic vs. vibrational oscillations in such systems.

View Article and Find Full Text PDF

Bijvoet's method, which makes use of anomalous x-ray diffraction or dispersion, is the standard means of directly determining the absolute (stereochemical) configuration of molecules, but it requires crystalline samples and often proves challenging in structures exclusively comprising light atoms. Herein, we demonstrate a mass spectrometry approach that directly images the absolute configuration of individual molecules in the gas phase by cold target recoil ion momentum spectroscopy after laser ionization-induced Coulomb explosion. This technique is applied to the prototypical chiral molecule bromochlorofluoromethane and the isotopically chiral methane derivative bromodichloromethane.

View Article and Find Full Text PDF

We experimentally demonstrate the feasibility of a super-resolution technique based on eigenmode decomposition. This technique has been proposed theoretically but, to the best of our knowledge, has not previously been realized experimentally for optical imaging systems with circular apertures. We use a standard diffraction-limited 4f imaging system with circular apertures for which the radial eigenmodes are the circular prolate spheroidal functions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsde9ji2le1nobar3k8o13ji6n79temf4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once