Publications by authors named "Allan Peter Davis"

For 20 years, the Comparative Toxicogenomics Database (CTD; https://ctdbase.org) has provided high-quality, literature-based curated content describing how environmental chemicals affect human health. Today, CTD includes over 94 million toxicogenomic connections relating chemicals, genes/proteins, phenotypes, anatomical terms, diseases, comparative species, pathways and exposures.

View Article and Find Full Text PDF

In environmental health, the specific molecular mechanisms connecting a chemical exposure to an adverse endpoint are often unknown, reflecting knowledge gaps. At the public Comparative Toxicogenomics Database (CTD; https://ctdbase.org/), we integrate manually curated, literature-based interactions from CTD to compute four-unit blocks of information organized as a potential step-wise molecular mechanism, known as "CGPD-tetramers," wherein a chemical interacts with a gene product to trigger a phenotype which can be linked to a disease.

View Article and Find Full Text PDF

The molecular mechanisms connecting environmental exposures to adverse endpoints are often unknown, reflecting knowledge gaps. At the Comparative Toxicogenomics Database (CTD), we developed a bioinformatics approach that integrates manually curated, literature-based interactions from CTD to generate a "CGPD-tetramer": a 4-unit block of information organized as a step-wise molecular mechanism linking an initiating Chemical, an interacting Gene, a Phenotype, and a Disease outcome. Here, we describe a novel, user-friendly tool called CTD Tetramers that generates these evidence-based CGPD-tetramers for any curated chemical, gene, phenotype, or disease of interest.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) harmonizes cross-species heterogeneous data for chemical exposures and their biological repercussions by manually curating and interrelating chemical, gene, phenotype, anatomy, disease, taxa, and exposure content from the published literature. This curated information is integrated to generate inferences, providing potential molecular mediators to develop testable hypotheses and fill in knowledge gaps for environmental health.

View Article and Find Full Text PDF

There is a critical need to understand the health risks associated with vaping e-cigarettes, which has reached epidemic levels among teens. Juul is currently the most popular type of e-cigarette on the market. Using the Comparative Toxicogenomics Database (CTD; http://ctdbase.

View Article and Find Full Text PDF

Medical cannabis represents a potential route of pesticide exposure to susceptible populations. We compared the qualifying conditions for medical use and pesticide testing requirements of cannabis in 33 states and Washington, D.C.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD) is a freely available public resource that curates and interrelates chemical, gene/protein, phenotype, disease, organism, and exposure data. CTD can be used to address toxicological mechanisms for environmental chemicals and facilitate the generation of testable hypotheses about how exposures affect human health. At CTD, manually curated interactions for chemical-induced phenotypes are enhanced with anatomy terms (tissues, fluids, and cell types) to describe the physiological system of the reported event.

View Article and Find Full Text PDF

The public Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is an innovative digital ecosystem that relates toxicological information for chemicals, genes, phenotypes, diseases, and exposures to advance understanding about human health. Literature-based, manually curated interactions are integrated to create a knowledgebase that harmonizes cross-species heterogeneous data for chemical exposures and their biological repercussions.

View Article and Find Full Text PDF

Environmental health studies relate how exposures (eg, chemicals) affect human health and disease; however, in most cases, the molecular and biological mechanisms connecting an exposure with a disease remain unknown. To help fill in these knowledge gaps, we sought to leverage content from the public Comparative Toxicogenomics Database (CTD) to identify potential intermediary steps. In a proof-of-concept study, we systematically compute the genes, molecular mechanisms, and biological events for the environmental health association linking air pollution toxicants with 2 cardiovascular diseases (myocardial infarction and hypertension) as a test case.

View Article and Find Full Text PDF

Public databases provide a wealth of freely available information about chemicals, genes, proteins, biological networks, phenotypes, diseases, and exposure science that can be integrated to construct pathways for systems toxicology applications. Relating this disparate information from public repositories, however, can be challenging since databases use a variety of ways to represent, describe, and make available their content. The use of standard vocabularies to annotate key data concepts, however, allows the information to be more easily exchanged and combined for discovery of new findings.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a premier public resource for literature-based, manually curated associations between chemicals, gene products, phenotypes, diseases, and environmental exposures. In this biennial update, we present our new chemical-phenotype module that codes chemical-induced effects on phenotypes, curated using controlled vocabularies for chemicals, phenotypes, taxa, and anatomical descriptors; this module provides unique opportunities to explore cellular and system-level phenotypes of the pre-disease state and allows users to construct predictive adverse outcome pathways (linking chemical-gene molecular initiating events with phenotypic key events, diseases, and population-level health outcomes).

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org) is a public resource that manually curates the scientific literature to provide content that illuminates the molecular mechanisms by which environmental exposures affect human health. We introduce our new chemical-phenotype module that describes how chemicals can affect molecular, cellular, and physiological phenotypes.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org) is a free resource that provides manually curated information on chemical, gene, phenotype, and disease relationships to advance understanding of the effect of environmental exposures on human health. Four core content areas are independently curated: chemical-gene interactions, chemical-disease and gene-disease associations, chemical-phenotype interactions, and environmental exposure data (e.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) provides information about interactions between chemicals and gene products, and their relationships to diseases. Core CTD content (chemical-gene, chemical-disease and gene-disease interactions manually curated from the literature) are integrated with each other as well as with select external datasets to generate expanded networks and predict novel associations.

View Article and Find Full Text PDF

Strategies for discovering common molecular events among disparate diseases hold promise for improving understanding of disease etiology and expanding treatment options. One technique is to leverage curated datasets found in the public domain. The Comparative Toxicogenomics Database (CTD; http://ctdbase.

View Article and Find Full Text PDF

Background: Exposure science studies the interactions and outcomes between environmental stressors and human or ecological receptors. To augment its role in understanding human health and the exposome, we aimed to centralize and integrate exposure science data into the broader biological framework of the Comparative Toxicogenomics Database (CTD), a public resource that promotes understanding of environmental chemicals and their effects on human health.

Objectives: We integrated exposure data within the CTD to provide a centralized, freely available resource that facilitates identification of connections between real-world exposures, chemicals, genes/proteins, diseases, biological processes, and molecular pathways.

View Article and Find Full Text PDF

Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles.

View Article and Find Full Text PDF

Manually curating chemicals, diseases and their relationships is significantly important to biomedical research, but it is plagued by its high cost and the rapid growth of the biomedical literature. In recent years, there has been a growing interest in developing computational approaches for automatic chemical-disease relation (CDR) extraction. Despite these attempts, the lack of a comprehensive benchmarking dataset has limited the comparison of different techniques in order to assess and advance the current state-of-the-art.

View Article and Find Full Text PDF

Ten years ago, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) was developed out of a need to formalize, harmonize and centralize the information on numerous genes and proteins responding to environmental toxic agents across diverse species. CTD's initial approach was to facilitate comparisons of nucleotide and protein sequences of toxicologically significant genes by curating these sequences and electronically annotating them with chemical terms from their associated references.

View Article and Find Full Text PDF

The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation tasks collectively represent a community-wide effort to evaluate a variety of text-mining and information extraction systems applied to the biological domain. The BioCreative IV Workshop included five independent subject areas, including Track 3, which focused on named-entity recognition (NER) for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org).

View Article and Find Full Text PDF

Improving the prediction of chemical toxicity is a goal common to both environmental health research and pharmaceutical drug development. To improve safety detection assays, it is critical to have a reference set of molecules with well-defined toxicity annotations for training and validation purposes. Here, we describe a collaboration between safety researchers at Pfizer and the research team at the Comparative Toxicogenomics Database (CTD) to text mine and manually review a collection of 88,629 articles relating over 1,200 pharmaceutical drugs to their potential involvement in cardiovascular, neurological, renal and hepatic toxicity.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles.

View Article and Find Full Text PDF

The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the effects of environmental chemicals on human health. CTD biocurators read the scientific literature and manually curate a triad of chemical-gene, chemical-disease and gene-disease interactions. Typically, articles for CTD are selected using a chemical-centric approach by querying PubMed to retrieve a corpus containing the chemical of interest.

View Article and Find Full Text PDF

The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems for the biological domain. The 'BioCreative Workshop 2012' subcommittee identified three areas, or tracks, that comprised independent, but complementary aspects of data curation in which they sought community input: literature triage (Track I); curation workflow (Track II) and text mining/natural language processing (NLP) systems (Track III). Track I participants were invited to develop tools or systems that would effectively triage and prioritize articles for curation and present results in a prototype web interface.

View Article and Find Full Text PDF

Exposure to chemicals in the environment is believed to play a critical role in the etiology of many human diseases. To enhance understanding about environmental effects on human health, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org) provides unique curated data that enable development of novel hypotheses about the relationships between chemicals and diseases.

View Article and Find Full Text PDF