Publications by authors named "Allan M Lefer"

The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to upregulate endothelial nitric oxide synthase in isolated endothelial cells in a manner that is independent of their lipid-lowering effects. Nitric oxide inhibits polymorphonuclear leukocyte (PMN) adherence and attenuates cardiac dysfunction caused by PMNs after ischemia/reperfusion. Therefore, the authors hypothesized that a new statin, rosuvastatin, could attenuate PMN-induced cardiac dysfunction, and examined the effects of rosuvastatin in isolated ischemic (20 min) and reperfused (45 min) rat hearts perfused with PMNs.

View Article and Find Full Text PDF

Inhibition of protein kinase C (PKC) activity has been shown to improve the endothelial dysfunction associated with hyperglycemia and diabetes. The mechanisms by which inhibition of PKC activity ameliorates endothelial dysfunction in diabetes are not well understood. We investigated the relationship between PKC inhibition and leukocyte-endothelium interaction in the microcirculation of the rat mesentery exposed to 25 mmol/l D-glucose for 12 h.

View Article and Find Full Text PDF

Calpains are ubiquitous neutral cysteine proteases. Although their physiological role has yet to be clarified, calpains seem to be involved in the expression of cell adhesion molecules. Therefore, we hypothesized that a selective calpain inhibitor could attenuate polymorphonuclear (PMN) leukocyte-induced myocardial ischemia-reperfusion (I/R) injury.

View Article and Find Full Text PDF

Background: [corrected] Poly-N-acetylglucosamine (p-GlcNAc) is a secretion of marine diatoms that is known to be useful in controlling bleeding. As a component of promoting hemostasis, p-GlcNAc is thought to exert vasoconstrictor effects in arteries. The present study was undertaken to determine whether p-GlcNAc induced a significant vasoconstrictor effect and, if so, what the mechanism of this effect might be.

View Article and Find Full Text PDF