The reactivity of with CD has been experimentally investigated for its relevance in the chemistry of plasmas used for the conversion of CO in carbon-neutral fuels. Non-equilibrium plasmas are currently explored for their capability to activate very stable molecules (such as methane and carbon dioxide) and initiate a series of reactions involving highly reactive species (e.g.
View Article and Find Full Text PDFIn this paper, we present a compact Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) designed for real time analysis of volatile organic compounds (VOCs) in air or in water. The spectrometer is based on a structured permanent magnet made with NdFeB segments. Chemical ionization is implemented inside the ICR cell.
View Article and Find Full Text PDFWe present the photoelectron spectra of C3Hx (x = 0-3) formed in a microwave discharge flow-tube reactor by consecutive H abstractions from C3H4 (C3Hx + F → C3Hx-1 + HF (x = 1-4)), but also from F + CH4 schemes by secondary reactions. The spectra were obtained combining tunable VUV synchrotron radiation with double imaging electron/ion coincidence techniques, yielding mass-selected threshold photoelectron spectra. The obtained results complement not only existing ones, but for the first time the photoelectron spectra of C3, cyclic and linear C3H (c,l-C3H) as well as of the excited states of C3H3 are reported.
View Article and Find Full Text PDFThe methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH + CHCCCH (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan.
View Article and Find Full Text PDFThe reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation.
View Article and Find Full Text PDFRev Assoc Med Bras (1992)
February 2008